首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate constant for the reaction OH(X2Pi) + OH(X2Pi) --> O(3P) + H2O has been measured over the temperature range 293-373 K and pressure range 2.6-7.8 Torr in both Ne and Ar bath gases. The OH radical was created by 193 nm laser photolysis of N2O to produce O(1D) atoms that reacted rapidly with H2O to produce the OH radical. The OH radical was detected by quantitative time-resolved near-infrared absorption spectroscopy using Lambda-doublet resolved rotational transitions of the first overtone of OH(2,0) near 1.47 microm. The temporal concentration profiles of OH were simulated using a kinetic model, and rate constants were determined by minimizing the sum of the squares of residuals between the experimental profiles and the model calculations. At 293 K the rate constant for the title reaction was found to be (2.7 +/- 0.9) x 10(-12) cm(3) molecule(-1) s(-1), where the uncertainty includes an estimate of both random and systematic errors at the 95% confidence level. The rate constant was measured at 347 and 373 K and found to decrease with increasing temperature.  相似文献   

2.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

3.
High-resolution X-ray diffraction and polarized neutron diffraction experiments have been performed on the Y-semiquinonate complex, Y(HBPz3)2(DTBSQ), in order to determine the charge and spin densities in the paramagnetic ground state, S = (1/2). The aim of these combined studies is to bring new insights to the antiferromagnetic coupling mechanism between the semiquinonate radical and the rare earth ion in the isomorphous Gd(HBPz3)2(DTBSQ) complex. The experimental charge density at 106 K yields detailed information about the bonding between the Y3+ ion and the semiquinonate ligand; the topological charge of the yttrium atom indicates a transfer of about 1.5 electrons from the radical toward the Y3+ ion in the complex, in agreement with DFT calculations. The electron density deformation map reveals well-resolved oxygen lone pairs with one lobe polarized toward the yttrium atom. The determination of the induced spin density at 1.9 K under an applied magnetic field of 9.5 T permits the visualization of the delocalized magnetic orbital of the radical throughout the entire molecule. The spin is mainly distributed on the oxygen atoms [O1 (0.12(1) mu B), O2(0.11(1) mu B)] and the carbon atoms [C21 (0.24(1) mu B), C22(0.20(1) mu B), C24(0.16(1) mu B), C25(0.12(1) mu B)] of the carbonyl ring. A significant spin delocalization on the yttrium site of 0.08(2) mu B is observed, proving that a direct overlap with the radical magnetic orbital can occur at the rare earth site and lead to antiferromagnetic coupling. The DFT calculations are in good quantitative agreement with the experimental charge density results, but they underestimate the spin delocalization of the oxygen toward the yttrium and the carbon atoms of the carbonyl ring.  相似文献   

4.
The mononuclear radical anionic complex [1-N-methyl-1,10-phenanthrolium][Ni(dmit)_2](dmit = 1,3-dithiole-2-thione-4,5-dithiolate) with a new countercation has been prepared and its crystal structure was determined by X-ray crystallography at 298 and 80 K. In the mononuclear radical anionic complex, the nickel ion assumes a slightly distorted square-planar geometry. There are two and three kinds of intermolecular interactions between adjacent mononuclear radical anionic complexes in the crystal at 298 and 80 K, respectively(i.e., Models A and B at 298 K; and Models C, D and E at 80 K). The variable-temperature magnetic moments indicate a strong antiferromagnetic interaction between the adjacent mononuclear radical anionic complexes, and the theoretical calculations reveal that the stronger antiferromagnetic coupling strength at lower temperature should be contributed to the larger overlap integrals between the short contact atoms. This study is the first to reveal the mechanism of stronger magnetic coupling strength at lower temperature for a mononuclear radical anionic nickel complex with dmit as the ligand.  相似文献   

5.
The reaction of propionyl radical with oxygen has been studied using the full coupled cluster theory with the complete basis set. This is the first time to gain a conclusive insight into the reaction mechanism and kinetics for this important reaction in detail. The reaction takes place via a chemical activation mechanism. The barrierless association of propionyl with oxygen produces the propionylperoxy radical, which decomposes to form the hydroxyl radical and the three-center alpha-lactone predominantly or the four-center beta-propiolactone. The oxidation of propionyl radical to carbon monoxide or carbon dioxide is not straightforward rather via the secondary decomposition of alpha-lactone and beta-propiolactone. Kinetically, the overall rate constant is almost pressure independent and it approaches the high-pressure limit around tens of torr of helium. At temperatures below 600 K, the rate constant shows negative temperature dependence. The experimental yields of the hydroxyl radical can be well reproduced, with the average energy transferred per collision -DeltaE=20-25 cm(-1) at 213 and 295 K (helium bath gas). At low pressures, together with the hydroxy radical, alpha-lactone is the major product, while beta-propiolactone only accounts for about one-fifth of alpha-lactone. At the high-pressure limit, the production of the propionylperoxy radical is dominant together with a fraction of the isomers. The infrared spectroscopy or the mass spectroscopy techniques are suggested to be employed in the future experimental study of the C2H5CO+O2 reaction.  相似文献   

6.
The reactions of 2-mercatopyrimidine with MCl(2) (M = Mn(2+) or Co(2+)) in solvothermal conditions result single crystals of Mn(2-pymS)(2)1 and Co(2-pymS)(2)2. The two complexes both have the diamond-like topology frameworks, which could be traced back to the similar way of pyrimidine rings acting as the asymmetric bridging ligands. Interestingly, although they have similar chemical formulas, structural analysis by single-crystal X-ray diffraction studies reveals that the sulfur atoms play different roles in 1 and 2. For 1, the Mn ion lies in a distorted octahedral environment bonded to four nitrogen atoms and two sulfur atoms, whereas the Co ion in a distorted tetrahedral environment only coordinates to nitrogen atoms of pyrimidine ligands in the case of Co(2-pymS)(2)2. More interestingly, although magnetic measurements for both complex 1 and 2 indicate long range magnetic ordering and spin canting below the critical temperature (20 K for 1 and 42.9 K for 2), a hysteresis loop can be observed even at 40 K, which is just below the T(C) for complex 2, which is distinctly harder than 1.  相似文献   

7.
The rate constant for the reaction of the isocyanato radical, NCO(X2Pi) with chlorine atoms, Cl(2P), has been measured at 293 +/- 2 and 345 +/- 3 K to be (6.9 +/- 3.8) x 10(-11) and (4.0 +/- 2.2) x 10(-11) cm3 molecules(-1) s,(-1) respectively, where the uncertainties include both random and systematic errors. The measurements were carried out at pressures of 1.3-6.2 Torr with either Ar or CF4 as the bath gas and were independent of both pressure and nature of the third body. Equal concentrations of NCO and Cl atoms were created by 248 nm photolysis of ClNCO. The reaction was monitored by following the temporal dependence of NCO(X2Pi) using time-resolved infrared absorption spectroscopy on rotational transitions of the NCO(10(1)1) <-- (00(1)0) combination band. The reaction rate constant was determined by using a simple chemical model and minimizing the sum of the residuals between the experimental and computer generated temporal NCO concentration profiles. The reaction Cl + ClNCO --> Cl2 + NCO was found to contribute to the observed NCO. The rate constant for this reaction was found to be (2.4 +/- 1.6) x 10(-13) and (1.9 +/- 1.2) x 10(-13) cm3 molecules(-1) s,(-1) at 293 and 345 K, respectively, where the uncertainties include both random and systematic error.  相似文献   

8.
The reaction of Kpmf (pmf = anion of N,N[prime or minute]-bis(pyrimidyl-2-yl)formamidine, Hpmf) with CuSCN afforded the complexes K[Cu4(pmF)3(SCN)2], 1, and Cu(4)(pmf)4, 2. Reaction of 1 with [(n-Bu)4N]PF6 in THF gave the complex [(n-Bu)4N][Cu4(pmf)3(SCN)2], 3. Their structures were characterized by X-ray crystallography. Complexes 1 and 3 are the first linear tetranuclear complexes containing only Cu(I) atoms, while complex 2 is cyclic. The four Cu(I) atoms of complexes 1 and 3 are helically bridged by three tetradentate pmf- ligands. The [Cu4(pmf)3(SCN)2]- anions of 1 show weak interactions with adjacent [K(THF)5]+ cations through the sulfur atoms, forming infinite chains which are subjected to a series of intermolecular pi-pi interactions. In complex 2, the pmf- ligands are coordinated to the copper atoms in bidentate fashion through the two central amine nitrogen atoms, leaving the pyrimidine nitrogen atoms uncoordinated. Unexpected fluxional behaviors were observed for complexes 1 and 3 in solution. By the DNMR analysis, the free energy of activation (DeltaGc(not equal)) for the exchange is 12.8 kcal mol(-1) at 278 K (T(c)), and the rate constant of exchange (K(c)) is 470 s(-1) for 1. The DeltaGc(not equal) and Kc are 12.6 kcal mol(-1) at 273 K and 433 s(-1), respectively, for 3.  相似文献   

9.
New molecular complexes of C60 with metal(II) dibenzyldithiocarbamates, M(dbdtc)2.C60.0.5(C6H5Cl), where M=Cu(II), Ni(II), Pd(II), and Pt(II) and an ionic multicomponent complex [Cr(I)(C6H6)2*+].(C60*-).0.5[Pd(dbdtc)2] (Cr(C6H6)2: bis(benzene)chromium) were obtained. According to IR, UV-visible-NIR, and EPR spectra, involve neutral components, whereas 5 comprises neutral Pd(dbdtc)2 and C60*- and Cr(I)(C6H6)2*+ radical ions. The crystal structure of at 90 K reveals strongly puckered fullerene layers alternating with those composed of Pd(dbdtc)2. The Cr(I)(C6H6)2*+ radical cations are arranged between the layers. Fullerene radical anions form pairs within the layer with an interfullerene C...C contact of 3.092(2) A, indicating their monomeric state at 90 K. This contact is essentially shorter than the sum of van der Waals radii of two carbon atoms, and consequently, C60*- can dimerize. According to SQUID and EPR, single-bonded diamagnetic (C60-)2 dimers form in below 150-130 K on slow cooling and dissociate above 150-170 K on heating. The hysteresis was estimated to be 20 K. For the (C60-)2 dimers in, the dissociation temperature is the lowest among those for ionic complexes of C60 (160-250 K). Fast cooling of the crystals within 10 min from room temperature down to 100 K shifts dimerization temperatures to lower than 60 K. This shift is responsible for the retention of a monomeric phase of at 90 K in the X-ray diffraction experiment.  相似文献   

10.
Product channels for the self-reaction of the resonance-stabilized allyl radical, C3H5 + C3H5, have been studied with isomeric specificity at temperatures from 300-600 K and pressures from 1-6 Torr using time-resolved multiplexed photoionization mass spectrometry. Under these conditions 1,5-hexadiene was the only C6H10 product isomer detected. The lack of isomerization of the C6H10 product is in marked contrast to the C6H6 product in the related C3H3 + C3H3 reaction, and is due to the more saturated electronic structure of the C6H10 system. The disproportionation product channel, yielding allene + propene, was also detected, with an upper limit on the branching fraction relative to recombination of 0.03. Analysis of the allyl radical decay at 298 K yielded a total rate coefficient of (2.7 +/- 0.8) x 10(-11) cm(3) molecule(-1) s(-1), in good agreement with previous experimental measurements using ultraviolet kinetic absorption spectroscopy and a recent theoretical determination using variable reaction coordinate transition state theory. This result provides independent indirect support for the literature value of the allyl radical ultraviolet absorption cross-section near 223 nm.  相似文献   

11.
Absolute rate coefficients for the title reaction, HO + HOCH(2)C(O)CH(3)--> products (R1) were measured over the temperature range 233-363 K using the technique of pulsed laser photolytic generation of the HO radical coupled to detection by pulsed laser induced fluorescence. The rate coefficient displays a slight negative temperature dependence, which is described by: k(1)(233-363 K) = (2.15 +/- 0.30) x 10(-12) exp{(305 +/- 10)/T} cm(3) molecule(-1) s(-1), with a value of (5.95 +/- 0.50) x 10(-12) cm(3) molecule(-1) s(-1) at room temperature. The effects of the hydroxy-substituent and hydrogen bonding on the rate coefficient are discussed based on theoretical calculations. The present results, which extend the database on the title reaction to a range of temperatures, indicate that R1 is the dominant loss process for hydroxyacetone throughout the troposphere, resulting in formation of methylglyoxal at all atmospheric temperatures. As part of this work, the rate coefficient for reaction of O((3)P) with HOCH(2)C(O)CH(3) (R4) was measured at 358 K: k(4)(358 K) = (6.4 +/- 1.0) x 10(-14) cm(3) molecule(-1) s(-1) and the absorption cross section of HOCH(2)C(O)CH(3) at 184.9 nm was determined to be (5.4 +/- 0.1) x 10(-18) cm(2) molecule(-1).  相似文献   

12.
The mechanism of magnetic interactions in the bulk ferromagnet para-(methylthio)phenyl nitronyl nitroxide crystal (YUJNEW) has been theoretically reinvestigated, using only data from ab initio calculations and avoiding any a priori assumptions. We first calculate the microscopic magnetic interactions (JAB exchange couplings) between all unique radical pairs in the crystal, and then generate the macroscopic magnetic properties from the energy levels of the corresponding Heisenberg Hamiltonian. We thus propose a first principles, bottom-up (i.e. micro-to-macro) approach that brings theory and experiment together. We have applied this strategy to study the magnetism of YUJNEW using data from the previously reported 298 and 114 K crystal structures, and also data from a 10 K neutron diffraction structure fully reported in this work. The magnetic topology at 298 K is two-dimensional: noninteracting planes, with three different in-plane JAB pair interactions (+0.24, +0.09, and -0.11 cm(-1)) and one numerically negligible (+0.02 cm(-1)) inter-plane JAB interaction. In contrast, the magnetic topology at 114 and 10 K is three-dimensional, with two non-negligible in-plane JAB constants (+0.11 and +0.07 cm(-1) at 114 K; +0.22 and +0.07 cm(-1) at 10 K) and one inter-plane pair interaction (+0.07 cm(-1) at 114 K; +0.08 cm(-1) at 10 K). Although this three-dimensional magnetic topology is consistent with YUJNEW being a bulk ferromagnet, there is only a qualitative agreement between computed and experimental magnetic susceptibility chiT(T) data at 114 K. However, the experimental chiT(T) curve is quantitatively reproduced at 10 K. The heat capacity curve presents a peak at around 0.12 K, close to the estimated experimental peak (0.20 K).  相似文献   

13.
In this article we present results of approximating molecular modeling of the gas mixtures methane-nitrogen, methane-carbon dioxide, and nitrogen-carbon dioxide adsorbed on activated carbon at a temperature of 318.2 K, based on the Statistical Associating Fluid Theory for potentials of Variable Range. Unlike the previous work (Castro et al.) showing the results in rescaled units, in this work the results obtained are shown in real units as obtained in the experiments.  相似文献   

14.
The rate constants for the reaction OH + CH3C(O)OH --> products (1) were determined over the temperature range 287-802 K at 50 and 100 Torr of Ar or N2 bath gas using pulsed laser photolysis generation of OH by CH3C(O)OH photolysis at 193 nm coupled with OH detection by pulsed laser-induced fluorescence. The rate coefficient displays a complex temperature dependence with a sharp minimum at 530 K, indicating the competition between a reaction proceeding through a pre-reactive H-bonded complex to form CH3C(O)O + H2O, expected to prevail at low temperatures, and a direct methyl-H abstraction channel leading to CH2C(O)OH + H2O, which should dominate at high temperatures. The temperature dependence of the rate constant can be described adequately by k1(287-802 K) = 2.9 x 10(-9) exp{-6030 K/T} + 1.50 x 10(-13) exp{515 K/T} cm3 molecule(-1)(s-1), with a value of (8.5 +/- 0.9) x 10-13 cm3 molecule(-1)(s-1) at 298 K. The steep increase in rate constant in the range 550-800 K, which is reported for the first time, implies that direct abstraction of a methyl-H becomes the dominant pathway at temperatures greater than 550 K. However, the data indicates that up to about 800 K direct methyl-H abstraction remains adversely affected by the long-range H-bonding attraction between the approaching OH radical and the carboxyl -C(O)OH functionality.  相似文献   

15.
Single crystals of two modifications of the new magnesium boride carbide MgB(12)C(2) were synthesized from the elements in a metallic melt by using tantalum ampoules. Crystals were characterized by single-crystal X-ray diffraction and electron microprobe analysis (energy-dispersive (EDX) and wavelength-dispersive (WDX) X-ray spectroscopy). Orthorhombic MgB(12)C(2) is formed in a Cu/Mg melt at 1873 K. The crystal structure of o-MgB(12)C(2) (Imma, Z=4, a=5.6133(10), b=9.828(2), c=7.9329(15) A, 574 reflections, 42 variables, R(1)(F)=0.0208, wR(2)(I)=0.0540) consists of a hexagonal primitive array of B(12) icosahedra with Mg atoms and C(2) units in trigonal-prismatic voids. Each icosahedron has six exohedral B--B and six B--C bonds. Carbon is tetrahedrally coordinated by three boron atoms and one carbon atom with a remarkably long C--C distance of 1.727 A. Monoclinic MgB(12)C(2) is formed in an Al/Mg melt at 1573 K. The structure of m-MgB(12)C(2) (C2/c, Z=4, a=7.2736(11), b=8.7768(13), c=7.2817(11) A, beta=105.33(3) degrees , 1585 reflections, 71 variables, R(1)(F)=0.0228, wR(2)(I)=0.0610) may be described as a distorted cubic close arrangement of B(12) icosahedra. Tetrahedral voids are filled by C atoms and octahedral voids are occupied by Mg atoms. The icosahedra are interconnected by four exohedral B--B bonds to linear chains and by eight interstitial C atoms to form a three-dimensional covalent network. Both compounds fulfill the electron-counting rules of Wade and Longuet-Higgins.  相似文献   

16.
U(Ⅳ)配合物UNa2(pdc)3·6H2O的合成、结构及磁性研究   总被引:1,自引:4,他引:1  
合成了一种含有+4价铀的配合物UNa2(pdc)3·6H2O(H2pdc=吡啶-2,6-二羧酸), 并详细研究了其晶体结构和磁学性质. 晶体属于单斜晶系, P21/n空间群, 晶胞参数a=1.0205(2) nm, b=2.2221(4) nm, c=1.2537(3) nm, β=94.98(3)°, V=2.8323(10) nm3, Z=4. 化合物的中心铀原子为九配位, π-π相互作用和氢键使得该化合物形成了三维立体结构.  相似文献   

17.
Six novel homoleptic palladium(II) and platinum(II) complexes of donor-substituted alkenol ligands [PyCHC(R)OH; Py = pyridine, R = CH(3), CF(3), C(2)F(5), C(3)F(7)] of the general formula M[PyCHC(R)O](2) (M = Pd, Pt) were synthesized by reacting the deprotonated ligands with PdCl(2) and K(2)PtCl(4), respectively. Molecular structures, revealed by single-crystal X-ray diffraction analyses, showed a square-planar arrangement of ligands around palladium and platinum centers, with the pyridine-ring nitrogen atoms situated in a mutually trans position. The monomeric nature of the compounds in the solution state was confirmed by multinuclear ((1)H, (13)C, and (19)F) NMR spectroscopy. Thermal decomposition profiles recorded under a nitrogen atmosphere suggested their potential as volatile precursors to palladium and platinum materials. The volatility was increased upon elongation of the perfluoroalkyl chain, which suppressed the intermolecular interactions, as is evident in crystal packings. The volatility of these compounds was attributed to bidentate chelation of the alkenol units and cooperativity among the electron-back-donating nitrogen atom and interplay of electron-withdrawing C(x)F(y) groups, resulting in an effective steric shielding of the metal atoms.  相似文献   

18.
A novel carbon nitride compound, structurally related to the proposed graphitic phase of C(3)N(4), has been synthesized in a bulk well-crystallized form. The new material, with stoichiometry C(6)N(9)H(4)Cl, was prepared through a solid-state reaction of 2,4,6-triamino-1,3,5-triazine with 2,4,6-trichloro-1,3,5-triazine at 1.0-1.5 GPa and 500-550 degrees C and also through a self-reaction of 2-amino-4,6-dichloro-1,3,5-triazine at similar conditions. X-ray and electron diffraction measurements on the yellowish compound indicate a hexagonal space group (P6(3)/m) with cell parameters of a = 8.4379(10) A and c = 6.4296(2) A. This new compound possesses a two-dimensional C(6)N(9)H(3) framework that is structurally related to the hypothetical P6m2 graphitic phase of C(3)N(4), but with an ordered arrangement of C(3)N(3) voids. The large voids in the graphene sheets are occupied by chloride ions with an equivalent number of nitrogen atoms on the framework protonated for charge balance. The composition of the sample was determined by bulk chemical analysis and confirmed by electron energy loss (EELS) spectroscopy. The chemical and structural model is consistent with bulk density measurements and with the infrared and (13)C NMR spectra. This work represents the first bulk synthesis of a well-characterized and highly crystalline material containing a continuous network of alternating carbon and nitrogen atoms.  相似文献   

19.
Ivanov  R. E.  Zharkov  M. N.  Zlotin  S. G. 《Doklady Chemistry》2021,500(2):209-212
Doklady Chemistry - For the first time the reactions of radical nitration of alkenes and oxiranes with nitrogen dioxide in the liquid and supercritical carbon dioxide (sc-CO2) media were carried...  相似文献   

20.
Cyclic voltammograms are reported for C(60)(CF(3))(n) derivatives for the first time. The compounds studied were 1,9-C(60)(CF(3))(2) and 3 isomers of C(60)(CF(3))(10), including the structurally characterized derivative 1,3,7,10,14,17,23,28,31,40-C(60)(CF(3))(10) (C(60)(CF(3))(10)-3). The compound 1,9-C(60)(CF(3))(2) exhibited 3 reversible reductions; C(60)(CF(3))(10)-3 exhibited 2 reversible reductions; the other 2 isomers of C(60)(CF(3))(10) each exhibited 1 reversible reduction. ESR and near-IR spectroelectrochemical experiments were performed to characterize some of the C(60)(CF(3))(n)(-) and C(60)(CF(3))(n)(2-) species generated by cyclic voltammetry. The ESR spectrum of the C(60)(CF(3))(10)-3(-) radical anion consisted of an envelope of 25 lines centered at g = 2.0032 (the apparent a value is ca. 0.5 G), evidence of coupling between the unpaired electron and a significant number of the CF(3) fluorine atoms. The most significant finding is that this radical anion has a half-life in solution at 25 degrees C of about 7 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号