首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy norm a posteriori error estimates for mixed finite element methods   总被引:4,自引:0,他引:4  
This paper deals with the a posteriori error analysis of mixed finite element methods for second order elliptic equations. It is shown that a reliable and efficient error estimator can be constructed using a postprocessed solution of the method. The analysis is performed in two different ways: under a saturation assumption and using a Helmholtz decomposition for vector fields.

  相似文献   


2.
We present a posteriori error analysis of discontinuous Galerkin methods for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. We derive reliable error estimators of the residual type. Efficiency of the estimators is theoretically explored and numerically confirmed.  相似文献   

3.
In this article, residual‐type a posteriori error estimates are studied for finite volume element (FVE) method of parabolic equations. Residual‐type a posteriori error estimator is constructed and the reliable and efficient bounds for the error estimator are established. Residual‐type a posteriori error estimator can be used to assess the accuracy of the FVE solutions in practical applications. Some numerical examples are provided to confirm the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 259–275, 2017  相似文献   

4.
In this paper we present a new a posteriori error estimate for the boundary element method applied to an integral equation of the first kind. The estimate is local and sharp for quasi-uniform meshes and so improves earlier work of ours. The mesh-dependence of the constants is analyzed and shown to be weaker than expected from our previous work. Besides the Galerkin boundary element method, the collocation method and the qualocation method are considered. A numerical example is given involving an adaptive feedback algorithm.

  相似文献   


5.
We analyse three different a posteriori error estimators for elliptic partial differential equations. They are based on the evaluation of local residuals with respect to the strong form of the differential equation, on the solution of local problems with Neumann boundary conditions, and on the solution of local problems with Dirichlet boundary conditions. We prove that all three are equivalent and yield global upper and local lower bounds for the true error. Thus adaptive mesh-refinement techniques based on these estimators are capable to detect local singularities of the solution and to appropriately refine the grid near these singularities. Some numerical examples prove the efficiency of the error estimators and the mesh-refinement techniques.  相似文献   

6.
In the numerical treatment of integral equations of the first kind using boundary element methods (BEM), the author and E. P. Stephan have derived a posteriori error estimates as tools for both reliable computation and self-adaptive mesh refinement. So far, efficiency of those a posteriori error estimates has been indicated by numerical examples in model situations only. This work affirms efficiency by proving the reverse inequality. Based on best approximation, on inverse inequalities and on stability of the discretization, and complementary to our previous work, an abstract approach yields a converse estimate. This estimate proves efficiency of an a posteriori error estimate in the BEM on quasi--uniform meshes for Symm's integral equation, for a hypersingular equation, and for a transmission problem.

  相似文献   


7.
The local averaging technique has become a popular tool in adaptive finite element methods for solving partial differential boundary value problems since it provides efficient a posteriori error estimates by a simple postprocessing. In this paper, the technique is introduced to solve a class of symmetric eigenvalue problems. Its efficiency and reliability are proved by both the theory and numerical experiments structured meshes as well as irregular meshes. Dedicated to Charles A. Micchelli on his 60th birthday Mathematics subject classifications (2000) 65N15, 65N25, 65N30, 65N50. Subsidized by the Special Funds for Major State Basic Research Projects, and also supported in part by the Chinese National Natural Science Foundation and the Knowledge Innovation Program of the Chinese Academy of Sciences.  相似文献   

8.
In this paper, we derive gradient recovery type a posteriori error estimate for the finite element approximation of elliptic equations. We show that a posteriori error estimate provide both upper and lower bounds for the discretization error on the non-uniform meshes. Moreover, it is proved that a posteriori error estimate is also asymptotically exact on the uniform meshes if the solution is smooth enough. The numerical results demonstrating the theoretical results are also presented in this paper.  相似文献   

9.
We present and analyze an a posteriori error estimator based on mesh refinement for the solution of the hypersingular boundary integral equation governing the Laplacian in three dimensions. The discretization under consideration is a nonconforming domain decomposition method based on the Nitsche technique. Assuming a saturation property, we establish quasireliability and efficiency of the error estimator in comparison with the error in a natural (nonconforming) norm. Numerical experiments with uniform and adaptively refined meshes confirm our theoretical results. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 947–963, 2014  相似文献   

10.
In this paper, first we discuss a technique to compare finite volume method and some well-known finite element methods, namely the dual mixed methods and nonconforming primal methods, for elliptic equations. These both equivalences are exploited to give us a posteriori error estimator for finite volume methods. This estimator is explicitly given, easy to compute and asymptotically exact without any regularity of the solution in unstructured grids.  相似文献   

11.
We obtain a computable a posteriori error bound on the broken energy norm of the error in the Fortin-Soulie finite element approximation of a linear second order elliptic problem with variable permeability. This bound is shown to be efficient in the sense that it also provides a lower bound for the broken energy norm of the error up to a constant and higher order data oscillation terms. The estimator is completely free of unknown constants and provides a guaranteed numerical bound on the error.

  相似文献   


12.
We develop a new approach to a posteriori error estimation for Galerkin finite element approximations of symmetric and nonsymmetric elliptic eigenvalue problems. The idea is to embed the eigenvalue approximation into the general framework of Galerkin methods for nonlinear variational equations. In this context residual-based a posteriori error representations are available with explicitly given remainder terms. The careful evaluation of these error representations for the concrete situation of an eigenvalue problem results in a posteriori error estimates for the approximations of eigenvalues as well as eigenfunctions. These suggest local error indicators that are used in the mesh refinement process.  相似文献   

13.
In this paper, we consider the a posteriori error analysis of discontinuous Galerkin finite element methods for the steady and nonsteady first order hyperbolic problems with inflow boundary conditions. We establish several residual-based a posteriori error estimators which provide global upper bounds and a local lower bound on the error. Further, for nonsteady problem, we construct a fully discrete discontinuous finite element scheme and derive the a posteriori error estimators which yield global upper bound on the error in time and space. Our a posteriori error analysis is based on the mesh-dependent a priori estimates for the first order hyperbolic problems. These a posteriori error analysis results can be applied to develop the adaptive discontinuous finite element methods.  相似文献   

14.
All first-order averaging or gradient-recovery operators for lowest-order finite element methods are shown to allow for an efficient a posteriori error estimation in an isotropic, elliptic model problem in a bounded Lipschitz domain in . Given a piecewise constant discrete flux (that is the gradient of a discrete displacement) as an approximation to the unknown exact flux (that is the gradient of the exact displacement), recent results verify efficiency and reliability of


in the sense that is a lower and upper bound of the flux error up to multiplicative constants and higher-order terms. The averaging space consists of piecewise polynomial and globally continuous finite element functions in components with carefully designed boundary conditions. The minimal value is frequently replaced by some averaging operator applied within a simple post-processing to . The result provides a reliable error bound with .

This paper establishes and so equivalence of and . This implies efficiency of for a large class of patchwise averaging techniques which includes the ZZ-gradient-recovery technique. The bound established for tetrahedral finite elements appears striking in that the shape of the elements does not enter: The equivalence is robust with respect to anisotropic meshes. The main arguments in the proof are Ascoli's lemma, a strengthened Cauchy inequality, and elementary calculations with mass matrices.

  相似文献   


15.
In this article, we analyse a posteriori error estimates of mixed finite element discretizations for linear parabolic equations. The space discretization is done using the order λ?≥?1 Raviart–Thomas mixed finite elements, whereas the time discretization is based on discontinuous Galerkin (DG) methods (r?≥?1). Using the duality argument, we derive a posteriori l (L 2) error estimates for the scalar function, assuming that only the underlying mesh is static.  相似文献   

16.
** Email: vjervin{at}clemson.edu*** Email: norbert.heuer{at}brunel.ac.uk We present an adaptive refinement strategy for the h-versionof the boundary element method with weakly singular operatorson surfaces. The model problem deals with the exterior Stokesproblem, and thus considers vector functions. Our error indicatorsare computed by local projections onto 1D subspaces definedby mesh refinement. These indicators measure the error separatelyfor the vector components and allow for component-independentadaption. Assuming a saturation condition, the indicators giverise to an efficient and reliable error estimator. Also we describehow to deal with meshes containing quadrilaterals which arenot shape regular. The theoretical results are underlined bynumerical experiments. To justify the saturation assumption,in the Appendix we prove optimal lower a priori error estimatesfor edge singularities on uniform and graded meshes.  相似文献   

17.
For elliptic interface problems with flux jumps, this article studies robust residual‐ and recovery‐based a posteriori error estimators for the conforming finite element approximation. The residual estimator is a natural extension of that developed in [Bernardi and Verfürth, Numer Math 85 (2000), 579–608; Petzoldt, Adv Comp Math 16 (2002), 47–75], and the recovery estimator is a nontrivial extension of our method developed in Cai and Zhang, SIAM J Numer Anal 47 (2009) 2132–2156. It is shown theoretically that reliability and efficiency bounds of these error estimators are independent of the jumps provided that the distribution of the coefficients is locally monotone. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28:476–491, 2012  相似文献   

18.
In this paper, an adaptive finite element method is developed for stationary conduction convection problems. Using a mixed finite element formulation, residual type a posteriori error estimates are derived by means of the general framework of R. Verfürth. The effectiveness of the adaptive method is further demonstrated through two numerical examples. The first example is problem with known solution and the second example is a physical model of square cavity stationary flow.  相似文献   

19.
A linearized compressible viscous Stokes system is considered. The a posteriori error estimates are defined and compared with the true error. They are shown to be globally upper and locally lower bounds for the true error of the finite element solution. Some numerical examples are given, showing an efficiency of the estimator. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 412–431, 2004.  相似文献   

20.
Adaptive refinement techniques are developed in this paper for the meshless Galerkin boundary node method for hypersingular boundary integral equations. Two types of error estimators are derived. One is a perturbation error estimator that is formulated based on the difference between numerical solutions obtained using two consecutive nodal arrangements. The other is a projection error estimator that is formulated based on the difference between the numerical solution itself and its projection. These error estimators are proven to have an upper and a lower bound by the constant multiples of the exact error in the energy norm. A localization scheme is presented to accomodate the non-local property of hypersingular integral operators for the needed computable local error indicators. The convergence of the adaptive meshless techniques is verified theoretically. To confirm the theoretical results and to show the efficiency of the adaptive techniques, numerical examples in 2D and 3D with high singularities are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号