首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Monika Weymuth  Stefan Sauter 《PAMM》2015,15(1):605-606
We develop a generalized finite element method for the discretization of elliptic partial differential equations in heterogeneous media. In [5] a semidiscrete method has been introduced to set up an adaptive local finite element basis (AL basis) on a coarse mesh with mesh size H which, typically, does not resolve the matrix of the media while the textbook finite element convergence rates are preserved. This method requires O(log(1/H)d+1) basis functions per mesh point where d denotes the spatial dimension of the computational domain. We present a fully discrete version of this method, where the AL basis is constructed by solving finite-dimensional localized problems, and which preserves the optimal convergence rates. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In this paper, we present a two-grid finite element method for the Allen-Cahn equation with the logarithmic potential. This method consists of two steps. In the first step, based on a fully implicit finite element method, the Allen-Cahn equation is solved on a coarse grid with mesh size H. In the second step, a linearized system whose nonlinear term is replaced by the value of the first step is solved on a fine grid with mesh size h. We give the energy stabilities of the traditional finite element method and the two-grid finite element method. The optimal convergence order of the two-grid finite element method in H1 norm is achieved when the mesh sizes satisfy h = O(H2). Numerical examples are given to demonstrate the validity of the proposed scheme. The results show that the two-grid method can save the CPU time while keeping the same convergence rate.  相似文献   

3.
We consider the Boussinesq model of buoyancy driven fluid flows. This nonlinear system is solved numerically using a two level finite element method. On the first level, a nonlinear system is solved on a very coarse mesh. Thereafter, a linear system is solved on a fine mesh.

In a standard approach, one might obtain the numerical solution from a discretization of the original, nonlinear system using the same fine mesh.

Both solutions are of equal order of accuracy if the mesh widths are properly balanced. Therefore the two level method is very efficient.  相似文献   

4.
In this paper, we will investigate a two grid finite element discretization method for the semi‐linear hyperbolic integro‐differential equations by piecewise continuous finite element method. In order to deal with the semi‐linearity of the model, we use the two grid technique and derive that once the coarse and fine mesh sizes H, h satisfy the relation h = H2 for the two‐step two grid discretization method, the two grid method achieves the same convergence accuracy as the ordinary finite element method. Both theoretical analysis and numerical experiments are given to verify the results.  相似文献   

5.
In this article, we develop a two‐grid algorithm for nonlinear reaction diffusion equation (with nonlinear compressibility coefficient) discretized by expanded mixed finite element method. The key point is to use two‐grid scheme to linearize the nonlinear term in the equations. The main procedure of the algorithm is solving a small‐scaled nonlinear equations on the coarse grid and dealing with a linearized system on the fine space using the Newton iteration with the coarse grid solution. Error estimation to the expanded mixed finite element solution is analyzed in detail. We also show that two‐grid solution achieves the same accuracy as long as the mesh sizes satisfy H = O(h1/2). Two numerical experiments are given to verify the effectiveness of the algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

6.
In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the NCP 1P 1 pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size H and a large stabilized Stokes problem on a fine mesh size h = H/3. Numerical results are presented to show the convergence performance of this combined algorithm.  相似文献   

7.
Two-grid methods for characteristic finite volume element solutions are presented for a kind of semilinear convection-dominated diffusion equations. The methods are based on the method of characteristics, two-grid method and the finite volume element method. The nonsymmetric and nonlinear iterations are only executed on the coarse grid (with grid size H). And the fine-grid solution (with grid size h) can be obtained by a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. The two-grid methods achieve asymptotically optimal approximation as long as the mesh sizes satisfy H = O(h1/3).  相似文献   

8.
In this article we consider the fully discrete two-level finite element Galerkin method for the two-dimensional nonstationary incompressible Navier-Stokes equations. This method consists in dealing with the fully discrete nonlinear Navier-Stokes problem on a coarse mesh with width $H$ and the fully discrete linear generalized Stokes problem on a fine mesh with width $h << H$. Our results show that if we choose $H=O(h^{1/2}$) this method is as the same stability and convergence as the fully discrete standard finite element Galerkin method which needs dealing with the fully discrete nonlinear Navier-Stokes problem on a fine mesh with width $h$. However, our method is cheaper than the standard fully discrete finite element Galerkin method.  相似文献   

9.
In this paper, the full discrete scheme of mixed finite element approximation is introduced for semilinear hyperbolic equations. To solve the nonlinear problem efficiently, two two‐grid algorithms are developed and analyzed. In this approach, the nonlinear system is solved on a coarse mesh with width H, and the linear system is solved on a fine mesh with width hH. Error estimates and convergence results of two‐grid method are derived in detail. It is shown that if we choose in the first algorithm and in the second algorithm, the two‐grid algorithms can achieve the same accuracy of the mixed finite element solutions. Finally, the numerical examples also show that the two‐grid method is much more efficient than solving the nonlinear mixed finite element system directly.  相似文献   

10.
11.
It is well known that convergence rate of finite element approximation is suboptimal in the L2 norm for solving biharmonic equations when P2 or Q2 element is used. The goal of this paper is to derive a weak Galerkin (WG) P2 element with the L2 optimal convergence rate by assuming the exact solution sufficiently smooth. In addition, our new WG finite element method can be applied to general mesh such as hybrid mesh, polygonal mesh or mesh with hanging node. The numerical experiments have been conducted on different meshes including hybrid meshes with mixed of pentagon and rectangle and mixed of hexagon and triangle.  相似文献   

12.
We consider a fully discrete two-level approximation for the time-dependent Navier–Stokes equations in two dimension based on a time-dependent projection. By defining this new projection, the iteration between large and small eddy components can be reflected by its associated space splitting. Hence, we can get a weakly coupled system of large and small eddy components. This two-level method applies the finite element method in space and Crank–Nicolson scheme in time. Moreover,the analysis and some numerical examples are shown that the proposed two-level scheme can reach the same accuracy as the classical one-level Crank–Nicolson method with a very fine mesh size h by choosing a proper coarse mesh size H. However, the two-level method will involve much less work.  相似文献   

13.
The two-level pressure projection stabilized finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions are investigated in this paper, whose variational formulation is the Navier-Stokes type variational inequality problem of the second kind. Based on the P1-P1 triangular element and using the pressure projection stabilized finite element method, we solve a small Navier-Stokes type variational inequality problem on the coarse mesh with mesh size H and solve a large Stokes type variational inequality problem for simple iteration or a large Oseen type variational inequality problem for Oseen iteration on the fine mesh with mesh size h. The error analysis obtained in this paper shows that if h=O(H2), the two-level stabilized methods have the same convergence orders as the usual one-level stabilized finite element methods, which is only solving a large Navier-Stokes type variational inequality problem on the fine mesh. Finally, numerical results are given to verify the theoretical analysis.  相似文献   

14.
In this article, two-grid methods are studied for solving nonlinear Sobolev equation using the finite volume element method. The methods are based on one coarse grid space and one fine grid space. The nonsymmetric and nonlinear iterations are only executed on the coarse grid (with grid size H), and the fine grid solution (with grid size h) can be obtained in a single symmetric and linear step. The optimal H1 error estimates are presented for the proposed methods, which show that the two-grid methods achieve optimal approximation as long as the mesh sizes satisfy h = 𝒪(H3|ln H|). As a result, solving such a large class of nonlinear Sobolev equations will not be much more difficult than solving one linearized equation.  相似文献   

15.
In this article we consider a two-level finite element Galerkin method using mixed finite elements for the two-dimensional nonstationary incompressible Navier-Stokes equations. The method yields a $H^1$-optimal velocity approximation and a $L_2$-optimal pressure approximation. The two-level finite element Galerkin method involves solving one small, nonlinear Navier-Stokes problem on the coarse mesh with mesh size $H$, one linear Stokes problem on the fine mesh with mesh size $h << H$. The algorithm we study produces an approximate solution with the optimal, asymptotic in $h$, accuracy.  相似文献   

16.
Summary. In this paper we introduce a class of robust multilevel interface solvers for two-dimensional finite element discrete elliptic problems with highly varying coefficients corresponding to geometric decompositions by a tensor product of strongly non-uniform meshes. The global iterations convergence rate is shown to be of the order with respect to the number of degrees of freedom on the single subdomain boundaries, uniformly upon the coarse and fine mesh sizes, jumps in the coefficients and aspect ratios of substructures. As the first approach, we adapt the frequency filtering techniques [28] to construct robust smoothers on the highly non-uniform coarse grid. As an alternative, a multilevel averaging procedure for successive coarse grid correction is proposed and analyzed. The resultant multilevel coarse grid preconditioner is shown to have (in a two level case) the condition number independent of the coarse mesh grading and jumps in the coefficients related to the coarsest refinement level. The proposed technique exhibited high serial and parallel performance in the skin diffusion processes modelling [20] where the high dimensional coarse mesh problem inherits a strong geometrical and coefficients anisotropy. The approach may be also applied to magnetostatics problems as well as in some composite materials simulation. Received December 27, 1994  相似文献   

17.
Two‐level penalty finite volume method for the stationary Navier–Stokes equations based on the P1 ? P0 element is considered in this paper. The method involves solving one small penalty Navier–Stokes problem on a coarse mesh with mesh size H = ?1 / 4h1 / 2, a large penalty Stokes problem on a fine mesh with mesh size h, where 0 < ? < 1 is a penalty parameter. The method we study provides an approximate solution with the convergence rate of same order as the penalty finite volume solution (u?h,p?h), which involves solving one large penalty Navier–Stokes problem on a fine mesh with the same mesh size h. However, our method can save a large amount of computational time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we consider a two-grid method for resolving the nonlinearity in finite element approximations of the equilibrium Navier–Stokes equations. We prove the convergence rate of the approximation obtained by this method. The two-grid method involves solving one small, nonlinear coarse mesh system and two linear problems on the fine mesh which have the same stiffness matrix with only different right-hand side. The algorithm we study produces an approximate solution with the optimal asymptotic in h and accuracy for any Reynolds number. Numerical example is given to show the convergence of the method.  相似文献   

19.
This article first recalls the results of a stabilized finite element method based on a local Gauss integration method for the stationary Stokes equations approximated by low equal‐order elements that do not satisfy the inf‐sup condition. Then, we derive general superconvergence results for this stabilized method by using a local coarse mesh L2 projection. These supervergence results have three prominent features. First, they are based on a multiscale method defined for any quasi‐uniform mesh. Second, they are derived on the basis of a large sparse, symmetric positive‐definite system of linear equations for the solution of the stationary Stokes problem. Third, the finite elements used fail to satisfy the inf‐sup condition. This article combines the merits of the new stabilized method with that of the L2 projection method. This projection method is of practical importance in scientific computation. Finally, a series of numerical experiments are presented to check the theoretical results obtained. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 28: 115‐126, 2012  相似文献   

20.
A two‐grid finite volume element method, combined with the modified method of characteristics, is presented and analyzed for semilinear time‐dependent advection‐dominated diffusion equations in two space dimensions. The solution of a nonlinear system on the fine‐grid space (with grid size h) is reduced to the solution of two small (one linear and one nonlinear) systems on the coarse‐grid space (with grid size H) and a linear system on the fine‐grid space. An optimal error estimate in H1 ‐norm is obtained for the two‐grid method. It shows that the two‐grid method achieves asymptotically optimal approximation, as long as the mesh sizes satisfy h = O(H2). Numerical example is presented to validate the usefulness and efficiency of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号