首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The motion of a conductor in a magnetic field induces eddy currents whose interaction with the field produces Lorentz forces opposing the motion. One can determine the velocity of the conductor from the force on the magnet system since the latter is equal but opposite to the Lorentz force on the conductor. This contactless method is known as Lorentz force velocimetry (LFV). We study an idealized configuration of LFV, i.e. a rotating solid cylinder interacting with a point dipole. The understanding of parameter influences in this setup can be helpful for more realistic configurations. We use a purely kinematic approach appropriate for low magnetic Reynolds numbers. Numerical results for small and large distances between dipole and cylinder have been obtained with the commercial software COMSOL Multiphysics. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We study magnetohydrodynamic flow of a liquid metal in a straight duct. The magnetic field is produced by an exterior magnetic dipole. This basic configuration is of fundamental interest for Lorentz force velocimetry (LFV), where the Lorentz force opposing the relative motion of conducting medium and magnetic field is measured to determine the flow velocity. The Lorentz force acts in equal strength but opposite direction on the flow as well as on the dipole. We are interested in the dependence of the velocity on the flow rate and on strength of the magnetic field as well as on geometric parameters such as distance and position of the dipole relative to the duct. To this end, we perform numerical simulations with an accurate finite-difference method in the limit of small magnetic Reynolds number, whereby the induced magnetic field is assumed to be small compared with the external applied field. The hydrodynamic Reynolds number is also assumed to be small so that the flow remains laminar. The simulations allow us to quantify the magnetic obstacle effect as a potential complication for local flow measurement with LFV. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
倾覆失稳是沉箱式防波堤的主要破坏形式之一,是稳定性验算的基本内容.采用质量-弹簧-阻尼器集总参数模型模拟沉箱式防波堤在单峰值冲击型、双峰值冲击型和冲击-振荡衰减型等不同类型近破波作用下的振动-提离摇摆运动过程,研究了不同类型近破波和沉箱的提离摇摆运动对沉箱式防波堤动力响应的影响.结果表明,在近破波冲击力幅值相同的条件下,近破波类型对沉箱的动力响应影响很大;提离摇摆运动虽然会使沉箱的转角幅值增大,但可有效地减小沉箱的位移、滑移力和倾覆力矩幅值.研究成果为允许沉箱式防波堤出现提离摇摆运动的设计概念提供了理论基础.  相似文献   

4.
The motion about a centre of mass of a rigid body with a tethered system, designed to launch a re-entry capsule from a circular orbit is considered. In the deployment of the tethered system the direction and value of the tensile strength of the tether vary and, if the point of application of the tensile strength does not coincide with the centre of mass of the body, a moment occurs which leads to oscillations of the body with variable amplitude and frequency. A non-linear equation of the perturbed motion of the body about the centre of mass under the action of the tensile force of the tether and the gravitational moment is derived. Assuming that the change in the value and direction of the tensile force is slow and also that the gravitational moment is small, approximate and exact solutions of the non-linear differential equation of the unperturbed motion are obtained in terms of elementary functions and elliptic Jacobi functions. For perturbed motion, the action integral is expressed in terms of complete elliptic integrals of the first and second kind.  相似文献   

5.
We deal with the system of equations of motion of a viscous barotropic fluid. The system contains an artificial viscosity, which depends on the density ρ of the fluid and is identically equal to zero for ρ ? 〈0, ρ2〉 (where, ρ2 is a given positive number). If ρ2 is chosen sufficiently large, the system coincides with the Navier–Stokes equations and the equations of continuity if the density has values that actually appear in real flows. The velocity is assumed to be equal to zero on the boundary of the flow field and the body force is not taken into account. Initial conditions need not be ‘small enough’. Applying the method of discretization in time, the existence of a weak solution on an interval of an arbitarary (but finite) length is proved and an estimate of the energy character is derived.  相似文献   

6.
In this article, mathematical and numerical models are developed to study pure electrohydrodynamic (EHD) effects on heat transfer and bubble shapes when an initial bubble attached to a superheated horizontal wall in nucleate boiling. In the modelling of EHD effects on heat transfer, an undeformed bubble is considered; the electric body force and Joule heat are added to the momentum and energy equations; governing equations for heat, fluid flow and electric fields are coupled numerically and solved using a non-orthogonal body-fitted mesh system with necessary interfacial treatments at the gas–liquid boundary. While, to study the pure effect of EHD on the deformation of the bubble, the evaluation of a deformable bubble without heat transfer is simulated by volume of fluid (VOF) method based on an axial symmetric Cartesian coordinate system. The simulations indicate that EHD can effectively enhance heat transfer rate of nucleate boiling by influencing the motion of the ring vortex around the bubble and that bubble can be elongated due to the pull in axial direction and push in the negative radial direction by the electric field force.  相似文献   

7.
The free motion of a thin cylindrical body is investigated based on a previously derived expression for the radiation force acting on moving point sources in a stratified fluid. The fundamental equations of motion are derived, the limits of applicability of the approximation used are indicated and the results of calculations of typical trajectories of a body which begins to move with a specified velocity from a position of neutral buoyancy at an angle to the horizon are presented. Calculations of the trajectory of motion of a thin cylindrical body in a stratified fluid when the total radiation force is taken into account show that the effect of the lateral component of this force is considerable and leads not only to quantitative corrections but also to qualitative effects (for example, to an increase in the oscillations of the body and a change in its direction of motion). The results obtained pertain both to the motion of solids in fluids and to the translational motion of vortex dipoles in weakly stratified media.  相似文献   

8.
We relate Gaussian curvature to the gyroscopic force, thus giving a mechanical interpretation of the former and a geometrical interpretation of the latter. We do so by considering the motion of a spinning disk constrained to be tangent to a curved surface. It is shown that the spin gives rise to a force on the disk that is equal to the magnetic force on a point charge moving in a magnetic field normal to the surface, of magnitude equal to the Gaussian curvature, and of charge equal to the disk's axial spin. In a special case, this demonstrates that the precession of Lagrange's top is due to the curvature of a sphere determined by the parameters of the top. © 2017 Wiley Periodicals, Inc.  相似文献   

9.
10.
Within dynamical simulations of biomechanical motion, the actuation of a multibody system (representing bones and joints) can be implemented via Hill-type muscle models. The main task of these models is to describe the typical force-length and force-velocity relation of real muscles. Thus, it is crucial that the muscle path itself, which is dynamically changing during a motion, is represented correctly in the model, because its length and the change of its length in time, i.e. its concentric or eccentric velocity, are related to the scalar value of the muscle force amount and to the direction of the force acting on the multibody system. In our work, we assume that a muscle tone is always present, even at rest, which leads to the conclusion that tendons and muscles are supposed to follow the path of minimal distance between two insertion points not intersecting the bones. This problem can for example be formulated as a constrained nonlinear optimisation problem, or it can be solved with a more efficient algorithm that determines this path as a G1 (geometrical) continuous combination of given curves. Within this work, both procedures are compared concerning the resulting path length and force directions and their computational costs. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
具有确定运动姿势的柔性体的动力学分析研究   总被引:1,自引:0,他引:1  
讨论了具有确定运动姿态的柔性多体系统的非线性动力学控制方程. 将飞行器在空间的运动看作是已知的,分析了飞行器上的挠性构件对飞行器运动和姿态的影响,利用假设模态,将挠性构件的变形,看作是空间直角坐标轴方向的线元振动所构成的,根据动力学中的Kane方法,建立了动力学方程,方程中包含表示弹性变形的结构刚度矩阵及表示变形体非线性变形几何刚度矩阵,方程推导从应力-应变关系入手,使用了有限元法.经简化,得到了带帆板结构的平面挠性体对飞行器运动影响的动力学方程,这种方程可通过计算机实现其数值解.  相似文献   

12.
ABSTRACT

In this paper a nonlinear string-mass structure of the vibration absorber is analyzed. This structure is convenient to be installed in vibration damping systems of high buildings for their protection in the case of earthquake. The considered string-mass structure contains a translator movable mass connected with two strings. Due to nonlinear geometric properties of the system the motion of the mass is described with a strong nonlinear second order differential equation. In the paper the approximate procedure for solving of the nonlinear equation of motion is developed. Based on the solution the influence of the string preloading force, slider mass and friction force on the vibration property of the string-mass system is investigated. It is concluded that variation of the preloading string force may be applied as a control parameter for vibration absorption and as the regulator of vibration decay time.  相似文献   

13.
The problem of the optimal control of a rigid body moving along a rough horizontal plane due to motion of two internal masses is solved. One of the masses moves horizontally parallel to the line of motion of the main body, while the other mass moves in the vertical direction. Such a mechanical system models a vibration-driven robot–a mobile device able to move in a resistive medium without special propellers (e.g., wheels, legs or caterpillars). Periodic motions are constructed for the internal masses to ensure velocity-periodic motion of the main body with maximum average velocity, provided that the period is fixed and the magnitudes of the accelerations of the internal masses relative to the main body do not exceed prescribed limits. Based on the optimal solution obtained for a fixed period without any constraints imposed on the amplitudes of vibration of the internal masses, a suboptimal solution that takes such constraints into account is constructed.  相似文献   

14.
Albeverio  S.  Klar  A. 《Potential Analysis》2000,12(3):281-297
Hamiltonian systems perturbed by a white noise force are discussed in several dimensions. By using an appropriate scaling of the stochastic force a convergence theorem for the invariants of the deterministic motion is proved. This corresponds to convergence of the system to a stationary distribution. Especially motion in a central force field is considered; the energy and angular momentum processes are investigated.  相似文献   

15.
There is considered the three-dimensional contact problem of elasticity theory with friction forces collinear to the motion direction. Such a case holds during stamp motion along the boundary of an elastic half-space with anisotropic friction /1/. In the case of an arbitrary friction surface, the mentioned force distribution is satisfied approximately during stamp motion.  相似文献   

16.
A counterintuitive unidirectional (say counterclockwise) motion of a toy rattleback takes place when it is started by tapping it at a long side or by spinning it slowly in the clockwise sense of rotation. We study the motion of a toy rattleback having an ellipsoidal-shaped bottom by using frictionless Newton equations of motion of a rigid body rolling without sliding in a plane. We simulate these equations for tapping and spinning initial conditions to see the contact trajectory, the force arm and the reaction force responsible for torque turning the rattleback in the counterclockwise sense of rotation. Long time behavior of such a rattleback is, however, quasi-periodic and a rattleback starting with small transversal oscillations turns in the clockwise direction.  相似文献   

17.
In their previous papers, the authors have considered the possibility of applying the theory of motion for nonholonomic systems with high-order constraints to solving one of the main problems of the control theory. This is a problem of transporting a mechanical system with a finite number of degrees of freedom from a given phase state to another given phase state during a fixed time. It was shown that, when solving such a problem using the Pontryagin maximum principle with minimization of the integral of the control force squared, a nonholonomic high-order constraint is realized continuously during the motion of the system. However, in this case, one can also apply a generalized Gauss principle, which is commonly used in the motion of nonholonomic systems with high-order constraints. It is essential that the latter principle makes it possible to find the control as a polynomial, while the use of the Pontryagin maximum principle yields the control containing harmonics with natural frequencies of the system. The latter fact determines increasing the amplitude of oscillation of the system if the time of motion is long. Besides this, a generalized Gauss principle allows us to formulate and solve extended boundary problems in which along with the conditions for generalized coordinates and velocities at the beginning and at the end of motion, the values of any-order derivatives of the coordinates are introduced at the same time instants. This makes it possible to find the control without jumps at the beginning and at the end of motion. The theory presented has been demonstrated when solving the problem of the control of horizontal motion of a trolley with pendulums. A similar problem can be considered as a model, since when the parameters are chosen correspondingly it becomes equivalent to the problem of suppression of oscillations of a given elastic body some cross-section of which should move by a given distance in a fixed time. The equivalence of these problems significantly widens the range of possible applications of the problem of a trolley with pendulums. The previous solution of the problem has been reduced to the selection of a horizontal force that is a solution to the formulated problem. In the present paper, it is offered to seek an acceleration of a trolley with which it moves by a given distance in a fixed time, as a time function but not a force applied to the trolley, while the velocities and accelerations are equal to zero at the beginning and end of motion. In this new problem, the rotation angles of pendulums are the principal coordinates. This makes it possible to find a sought acceleration of a trolley on the basis of a generalized Gauss principle according to the technique developed before. Knowing the motion of a trolley and pendulums it is easy to determine the required control force. The results of numerical calculations are presented.  相似文献   

18.
The optimal policy and the value function of a problem of optimal switching between a Wiener process and a deterministic motion on a segment are found in the present article. The speed of the motion is equal to 1 and it is in direction to the nearest end of the segment. For every switching a positive payment has to be paid. The problem is to minimize the sum of the first exit time of the process and the total payment. It turns out that there exist four different optimal rules depending on the length of the segment and the switching cost.  相似文献   

19.
The problem of orbital stability of a periodic motion of an autonomous two-degreeof- freedom Hamiltonian system is studied. The linearized equations of perturbed motion always have two real multipliers equal to one, because of the autonomy and the Hamiltonian structure of the system. The other two multipliers are assumed to be complex conjugate numbers with absolute values equal to one, and the system has no resonances up to third order inclusive, but has a fourth-order resonance. It is believed that this case is the critical one for the resonance, when the solution of the stability problem requires considering terms higher than the fourth degree in the series expansion of the Hamiltonian of the perturbed motion.Using Lyapunov’s methods and KAM theory, sufficient conditions for stability and instability are obtained, which are represented in the form of inequalities depending on the coefficients of series expansion of the Hamiltonian up to the sixth degree inclusive.  相似文献   

20.
An angular difference between direction of wheel motion and wheel plane produced a lateral force on a rolling tyre. A simple mechanism of shear stress generation in the contact area of tread is used. The coefficient of friction plays a limiting role. The resulting lateral force and self-aligning torque are computed by means of the belt model of a radial tyre. Finally, some numerical results are given to illustrate the theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号