首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胡海龙  张琨  王振兴  王晓平 《物理学报》2006,55(3):1430-1434
在Au(111)表面自组装制备了不同链长的烷烃硫醇分子膜,并利用导电原子力显微镜研究了 自组装分子膜的输运特性随外加压力的变化.结果发现分子膜的电流随压力的增加而增大, 其变化特征可以较好地用Hertz模型描述.在相同压力和电压下,通过分子膜的电流随分子链 长的增加呈指数衰减,其衰减因子先随压力的增加而减小,后逐渐趋于稳定.此外,长链分 子自组装膜的电流随压力的变化比短链分子膜更为明显.分析表明,自组装硫醇分子膜输运 特征的压力依赖性主要源于电荷在分子膜中的链间隧穿过程. 关键词:分子自组装输运特性原子力显微镜  相似文献   

2.
    
The present work describes the fabrication, characterization, and optimization of plasma polymerized pyrrole films, PPpy, prepared by continuous wave for application as the adhesion layers of bovine serum albumin (BSA). Plasma conditions used throughout the work produced significant differences in the chemical, physical, and electrochemical properties of the resultant PPpy films. Structural analysis and property characterizations of PPpy were carried out using Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and electrochemical workstation. Surface plasmon resonance spectroscopy was used to investigate the adsorption kinetics of BSA onto PPpy films. Moreover, when immersed in solutions or after BSA adsorption, the differences of electron transfer at the interfaces between the PPpy and the electrolyte solutions were determined by electro impedance spectroscopy. While there is a clear dependence of the protein adsorption affinity on the plasma polymerization condition employed during the film preparation. The relationship between film structure, electrochemical properties, polymer stability in aqueous buffer, and protein binding affinities are discussed.

  相似文献   


3.
    
Immobilization of biomolecules on solid surfaces is often combined with a partial loss of functionality. Therefore, smooth immobilization procedures are urgently required. Most recently, a Concanavalin A–Streptavidin (Con A–SAv) fusion protein was obtained, which allows the design of functionalized interfaces via self‐assembling. The protein was successfully produced in Escherichia coli and the functionality was tested by surface plasmon resonance (SPR) measurements as well as by the mean of reflectometric interference spectroscopy. A re‐generation of the mannan‐coated surfaces, by washing with buffer containing 10% methyl α‐D ‐mannopyranoside, could be demonstrated. This procedure should allow multiple measurements without replacing the chip. Investigation of the functionalized surfaces by atomic force microscopy showed a rather uniform coating with mannan and the fusion protein. In conclusion, the designed Con A–SAv fusion protein can be used as a universal linker between mannan‐coated surfaces and biotinylated biomolecules, e.g. biotinylated antibodies.  相似文献   

4.
胡海龙  张琨  王振兴  孔涛  胡颖  王晓平 《物理学报》2007,56(3):1674-1679
在金(111)表面组装了具有不同末端基团的硫醇单层分子膜,并利用导电原子力显微镜研究了分子膜的电输运性质,发现不同末端基团的分子自组装膜的导电能力有明显差别.结合X射线光电子能谱,研究了末端基团中碳原子的结合能与相应硫醇分子电导的关系.结果表明不同末端基团分子膜导电能力的差别可归结为末端基团碳原子电子结合能的差异.结合能越高,末端基团电子的局域化程度越强,导致电子有效注入分子主链的势垒越高,从而减弱了分子膜对电子的输运能力.此外,实验还发现不同末端基团的硫醇单层分子膜有不同的表面电势,导致分子膜电流电压特性曲线的零点产生偏离.关键词:分子自组装膜输运特性末端基团导电原子力显微镜  相似文献   

5.
    
The adsorption behavior and self-assembly of human plasma fibrinogen (HPF) on binary methyl- and amino-terminated self-assembled monolayers (SAMs) were investigated by atomic force microscopy (AFM). The binary SAMs were fabricated through self-assembly mechanism of organosilane molecules. The height of domains is the domain height is 0.8 ± 0.2 nm from the AFM topographic image. It corresponds to the domain height is 0.8 ± 0.2 nm from the AFM topographic image. It corresponds to the difference between the length of the alkyl chain of octadecyltrichlorosilane (OTS) and that of n-(6-aminohexyl)aminopropyltrimethoxysilane (AHAPS). The fibrinogen solution used ultrapure water as the solvent and its pH was adjusted at 3 and 10. From the AFM results at pH 3, HPF only formed network structures on the OTS domains of the binary SAM at early immersion times, and then the network structures expanded and connected between OTS domains through the AHAPS surface at long immersion times. In this case, a few HPFs are discretely adsorbed on the AHAPS surface. However, HPF is uniformly adsorbed on the binary SAM under the other conditions of pH.  相似文献   

6.
We have used a combination of physical diagnostics methods (laser probe, absorption spectroscopy, transmission electron microscopy) to study an aqueous suspension of silver nanoparticles, formed by laser ablation of a metal target in the atmosphere. We have established that application of the methods described allows us to obtain the most complete information about the state of nanosized metal particles in optically transparent media. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 6, pp. 896–901, November–December, 2008.  相似文献   

7.
The preparation of very thin (at the scale of a few tens of nanometers) gold films by thermal evaporation and deposition on a solid substrate (glass) remains a key step for the elaboration of transparent and sensitive optical biosensors. We study the influence of the glass surface treatment and its thermal conductivity on the structure and composition of evaporated gold films. Using a combination of atomic force microscopy (AFM), high resolution surface plasmon resonance (SPR) imaging, and X-ray photoelectron spectroscopy (XPS), we demonstrate that the grafting of a layer of long chain mercaptant, using 11-mercaptoundecyltrimethoxysilane (SξSi), prior to gold deposition produces a drastic modification of gold inner and surface textures. A thorough investigation of AFM image topography by 2D wavelet-based segmentation method reveals the flat conical shape of the gold surface grains and their shape invariance with the glass surface chemical treatment. However, this treatment leads to a drastic decrease of the mean size and polydispersity of these grains by a factor of 2, thereby lowering the gold surface roughness. The rationale is that the combination of surface forces and thermal transfer drives the formation of homogeneous and flatter gold films.  相似文献   

8.
    
The interplay between size, shape, mechanical properties, and surface chemistry of nanoparticles orchestrates cellular internalization, toxicity, circulation time, and biodistribution. Therefore, the safety of nanoparticles hinges on our ability to quantify nanoscale physicochemical characteristics. Current characterization tools, due to their limited resolution, are unable to map these properties correlatively at nanoscale. An innovative use of atomic force microscopy‐based techniques, namely nano‐correscopy, overcomes this limitation and offers multiprobe capability to map mechanical (viscous and elastic) and chemical domains of nanoparticles correlatively. The strengths of this approach are demonstrated using polymer composite nanorods: m‐PEG‐PLGA ((m‐PEG–methoxy‐poly (ethylene glycol)‐b‐poly (lactic‐co‐glycolic) acid). Precise distribution of PLGA (monomers of lactide and glycolide) and poly(ethylene glycol) (PEG) polymer across nanorods is identified. The hydrophobic lactide component is found predominantly at the apex, while hydrophilic glycolide and PEG assembled at the body of the nanorods and correlate with a gradient of nanomechanical properties. New knowledge of how both nanochemical domains and nanomechanical properties are distributed across the nanorod will allow elucidating the interactions of nanorods with the proteins and biomolecules in the future, which will directly influence the fate of nanorods in vivo and will guide new synthesis methods.  相似文献   

9.
Metal films containing silver and gold layers having different thicknesses were evaporated on glass substrates. Two-beam interference technique was applied to irradiate the surfaces by the fourth harmonic of a pulsed mode Nd:YAG laser. The atomic force microscopical study showed that surface relief grating having a period of 900 nm corresponding to the interference pattern was developed on the metallic films. The modulation amplitude of the laser-induced gratings was increasable by enhancing the number of laser pulses at constant fluence, and a groove depth commensurable with the film thicknesses was generated at the average fluence of 39.5 mJ/cm2 on bimetallic layers. The surface structure was more regular, and the modulation amplitude was larger in case of bimetallic films containing thicker gold layers. The threshold fluences of the phase transitions were determined by numerical temperature model calculations for different metal layer compositions, and a good agreement was found between the calculated and experimentally observed threshold values. The division of the metal stripes into droplets and the development of holes were explained by the melting of the entire metal layers and by the vaporization of silver at higher fluences. The angle-dependent surface plasmon resonance spectroscopy realized in Kretschmann arrangement proved that the laser-induced grating formation was accompanied by the change in the optical thickness and by the modification of the structure of the bimetallic films. Broad side wings appeared on the resonance curves caused by grating-coupling in case of appropriate rotation angle and sufficiently large modulation depth of the grating's grooves, according to our calculations. The coupling on deep gratings developed on bimetallic films containing the thinnest gold layer and on monometallic silver films resulted in separated secondary resonance minimum development. The periodic adherence of native streptavidin on the metallic gratings was detected by tapping mode AFM, and based on the shift of the secondary resonance peak.  相似文献   

10.
Tuning the charge transport through a metal-molecule-metal junction by changing the interface properties is widely studied and is of paramount importance for applications in molecular electronic devices. We used current sensing atomic force microscopy (CSAFM) as a tool to study the contact resistance of metal-molecule-metal (MmM) junctions formed by sandwiching self-assembled monolayers (SAMs) of alkanethiols with various end groups (-CH3, -OH and -NH2) between Au(1 1 1) substrates and Au coated AFM tips. The effect of interface chemistry on charge transport through such SAMs with varying end groups was studied in an inert, non-polar liquid (hexadecane) environment. We find that the contact resistances of these MmM junctions vary significantly based on the end group chemistry of the molecules.  相似文献   

11.
A conductive tip in an atomic force microscope (AFM) has extended the capability from conventional topographic imaging to electrical surface characterization. The conductive tip acts as a voltage electrode to provide stimuli and monitor electrical surface properties. In this review article, we have organized the AFM electrical techniques based on whether the electrical properties are monitored at the cantilever tip or across the sample. Furthermore, the techniques are organized based on probe detection signal. A number of acronyms are used in the literature, and the more commonly used ones are identified. The principle of each technique is described, and representative applications are presented. A better understanding of the spectrum of techniques should serve as the driver to expand the application of electrical techniques to study interdisciplinary phenomena at the nanoscale.  相似文献   

12.
The heterogeneous character of thin gold films prepared by thermal evaporation and the dependence of this heterogeneity on the rate of their deposition must be considered when exploiting their optical properties for biosensor purposes. For instance, the performance of thin gold films for surface plasmon resonance (SPR) biosensors may drastically be degraded if care is not taken to prepare a film with a high fraction of gold (>95%). We use three different models to interpret the SPR response of gold films prepared by thermal evaporation. We show that the interpretation of the SPR curves requires considering both a global heterogeneity of the gold films and a surface roughness. Our conclusions are further corroborated by scanning surface plasmon microscope (SSPM) images of these thin gold films.  相似文献   

13.
荆庆丽  杜春光*  高健存 《物理学报》2013,62(3):37302-037302
提出了一种新的表面等离子体共振传感器, 它包含三层结构: 棱镜、金属薄膜及二能级介质. 通过理论分析发现, 与通常表面等离子体共振系统不同, 这一物理系统中同时存在两种共振效应 (表面等离子体共振和能级间量子跃迁的共振效应), 它们共同作用的结果导致一系列新的物理现象, 其中一个令人感兴趣的现象是入射光的反射率对外场导致的微小能级移动十分敏感 (这一现象是通常的表面等离子体共振系统所不具有的). 由于能级移动依赖于外场, 所以最终入射光的反射率对外场具有灵敏的响应. 本文以外磁场导致能级移动的情况进行了理论计算, 结果表明, 这种表面等离子体共振系统的入射光的反射率对外加磁场极其敏感. 这一特性可以用来测量物质表面附近的微弱磁场, 有可能发展成为一种新型检测技术.  相似文献   

14.
尤思凡  孙鲁晔  郭静  裘晓辉  江颖 《物理学报》2019,68(1):16802-016802
表面和界面水在自然界、人们的日常生活以及现代科技中无处不在.它在物理、化学、环境学、材料学、生物学、地质学等诸多基础学科和应用领域起到至关重要的作用.因此,表面和界面水的功能与特性的研究,是水基础科学的一项核心任务.然而,由于水分子之间氢键相互作用的复杂性,及其与水-固界面相互作用的竞争,使得表(界)面水对于局域环境的影响非常敏感,往往需要深入到分子层次研究其微观结构和动力学过程.近年来,新型扫描探针技术的发展使得人们可以在单分子甚至亚分子尺度上对表(界)面水展开细致的实空间研究.本文着重介绍几种代表性的扫描探针技术及其在表(界)面水体系中的应用,包括:超高真空扫描隧道显微术、单分子振动谱技术、电化学扫描隧道显微术和非接触式原子力显微术.此外,本文还将对表(界)面水扫描探针技术研究面临的挑战和未来发展方向进行了展望.  相似文献   

15.
    
Understanding electron and ion dynamics is an important task for improving modern energy materials, such as photovoltaic perovskites. These materials usually have delicate nano- and microstructures that influence the device parameters. To resolve detailed structure–function relationships on the relevant micro- and nanometer length scales, the current macroscopic and microscopic measurement techniques are often not sufficient. Here, nanoscale surface photovoltage spectroscopy (nano-SPV) and nanoscale ideality factor mapping (nano-IFM) via time-resolved Kelvin probe force microscopy are introduced. These methods can map nanoscale variations in charge carrier recombination, ion migration, and defects. To show the potential of nano-SPV and nano-IFM, these methods are applied to perovskite samples with different morphologies. The results clearly show an improved uniformity of the SPV and SPV decay distribution within the perovskite films upon passivation and increasing the grain size. Nevertheless, nano-SPV and nano-IFM can still detect local variations in the defect density on these optimized samples, guiding the way for further optimization.  相似文献   

16.
17.
18.
    
Knowledge of the interaction forces between colloidal particles and surfaces is a precondition for understanding the stability of dispersed systems and adhesion phenomena. One of the methods available for direct measurement of surface forces is the atomic force microscope (AFM). Based on this method the so called “colloidal probe technique” was developed more than 10 years ago. Using a micron‐sized particle glued to the end of an AFM cantilever as the force sensor, this technique is predestined for the study of colloidal interactions. In this review we describe the colloidal probe technique and give an overview of its application in the field of adhesion forces.  相似文献   

19.
    
The review describes electrochemical applications of tip-enhanced Raman spectroscopy (TERS). These applications combine the merits of both scanning probe microscopy (SPM) and Raman spectroscopy, which enables us to simultaneously obtain high-resolution images of surface morphology and chemical information under the electrochemical environment. This review, first summarizes the pioneering work done on the TERS systems that operate in liquid and electrochemical environments, and then gives an overview of the typical instrumentation of electrochemical TERS (EC-TERS) based on electrochemical scanning tunneling microscopy (EC-STM). Furthermore, this review summarizes the advancements in EC-TERS studies of events that occur at the interfaces. These include potential dependent structural changes and electrochemical reactions. Finally, we discuss the current issues and future prospects of EC-TERS for microscopic studies of electrochemical interfaces.  相似文献   

20.
欧谷平  宋珍  桂文明  张福甲 《物理学报》2005,54(12):5717-5722
利用原子力显微镜对8-羟基喹啉硼化锂(LiBq4)/铟锡氧化物和8-羟基喹啉硼化锂/酞菁铜(CuPc)/铟锡氧化物表面分别进行了扫描,显示了LiBq4在不同衬底上的形貌差异,并进一步利用样品表面的x射线光电子能谱图验证了这一差异.实验表明,CuPc层的加入改善了LiBq4的成膜质量,并将这种改善归因于分子构型与电子亲和势的不同.关键词:原子力显微镜x射线光电子能谱电子亲和势  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号