首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time‐discrete variational schemes are introduced for both the Vlasov–Poisson–Fokker–Planck (VPFP) system and a natural regularization of the VPFP system. The time step in these variational schemes is governed by a certain Kantorovich functional (or scaled Wasserstein metric). The discrete variational schemes may be regarded as discretized versions of a gradient flow, or steepest descent, of the underlying free energy functionals for these systems. For the regularized VPFP system, convergence of the variational scheme is rigorously established. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
We develop a method for adaptive mesh refinement for steady state problems that arise in the numerical solution of Cahn–Hilliard equations with an obstacle free energy. The problem is discretized in time by the backward-Euler method and in space by linear finite elements. The adaptive mesh refinement is performed using residual based a posteriori estimates; the time step is adapted using a heuristic criterion. We describe the space–time adaptive algorithm and present numerical experiments in two and three space dimensions that demonstrate the usefulness of our approach.  相似文献   

3.
H. Troger  A. Pissarev  A. Steindl 《PAMM》2006,6(1):117-118
We study a simple discretized model of a vertical cylindrical beam with circular cross-section which is clamped at its lower end and free at its upper end. If the beam is longer than a critical length the initially straight configuration will loose its stability and the beam will buckle due to its own weight. Now the base of the buckled beam is rotated about its vertical axis. Several different families of steady state motions are detected for the undamped system. Their stability is investigated. Moreover it is shown that there is a big difference in the behavior of the discretized model of the beam whether internal damping is included in the model or not. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The trend to extend the working ranges of flexure hinges implies large deformations during operation. To conduct a failure analysis the total deformation is decomposed into desired deformation and deviations. In particular, a flexure hinge of leaf-spring type is examined. It is modeled by the theory of elastica. The resulting boundary value problem is solved numerically for the static case by Ritz's method. It is discretized into trial functions and their free coefficients are determined from the minimum of potential energy by optimization methods. The crucial point is that the elastic energy stored in the beam is formulated intrinsically, while the potential of external conservative loads is formulated in a space-fixed coordinate system. The well-known special case of buckling of a straight cantilever beam is used for verification. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this article, a combination of the finite element (FE) and differential quadrature (DQ) methods is used to solve the eigenvalue (buckling and free vibration) equations of rectangular thick plates resting on elastic foundations. The elastic foundation is described by the Pasternak (two-parameter) model. The three dimensional, linear and small strain theory of elasticity and energy principle are employed to derive the governing equations. The in-plane domain is discretized using two dimensional finite elements. The spatial derivatives of equations in the thickness direction are discretized in strong-form using DQM. Buckling and free vibration of rectangular thick plates of various thicknesses to width and aspect ratios with Pasternak elastic foundation are investigated using the proposed FE-DQ method. The results obtained by the mixed method have been verified by the few analytical solutions in the literature. It is concluded that the mixed FE-DQ method has good convergancy behavior; and acceptable accuracy can be obtained by the method with a reasonable degrees of freedom.  相似文献   

6.
The global-in-time existence of non-negative solutions to a parabolic strongly coupled system with mixed Dirichlet–Neumann boundary conditions is shown. The system describes the time evolution of the electron and hole densities in a semiconductor when electron-hole scattering is taken into account. The parabolic equations are coupled to the Poisson equation for the electrostatic potential. Written in the quasi-Fermi potential variables, the diffusion matrix of the parabolic system contains strong cross-diffusion terms and is only positive semi-definite such that the problem is formally of degenerate type. The existence proof is based on the study of a fully discretized version of the system, using a backward Euler scheme and a Galerkin method, on estimates for the free energy, and careful weak compactness arguments.  相似文献   

7.
Deeper investigation of time discretization for free surface problems is a widely neglected problem. Many existing approaches use an explicit decoupling which is only conditionally stable. Only few unconditionally stable methods are known, and known methods may suffer from too strong numerical dissipativity. They are also usually of first rder only [1, 9]. We are therefore looking for unconditionally stable, minimally dissipative methods of higher order. Linearly implicit Runge-Kutta (LIRK) methods are a class of one-step methods that require the solution of linear systems in each time step of a nonlinear system. They are well suited for discretized PDEs, e.g. parabolic problems [7]. They have been used successfully to solve the incompressible Navier-Stokes equations [5]. We suggest an adaption of these methods for free surface problems and compare different approximations to the Jacobian matrix needed for such methods. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We consider the discretizations of parameter-dependent, continuous-time dynamical systems. We show that the general one-step methods shift a generalized Hopf bifurcation and turn it into a generalized Neimark–Sacker point. We analyze the effect of discretization methods on the emanating Hopf curve. In particular, we obtain estimates for the eigenvalues of the discretized system along this curve. A detailed analysis of the discretized first Lyapunov coefficient is also given. The results are illustrated by a numerical example. Dynamical consequences are discussed.  相似文献   

9.
We present two new ways of preconditioning sequences of nonsymmetric linear systems in the special case where the implementation is matrix free. Both approaches are fully algebraic, they are based on the general updates of incomplete LU decompositions recently introduced in (SIAM J. Sci. Comput. 2007; 29 (5):1918–1941), and they may be directly embedded into nonlinear algebraic solvers. The first of the approaches uses a new model of partial matrix estimation to compute the updates. The second approach exploits separability of function components to apply the updated factorized preconditioner via function evaluations with the discretized operator. Experiments with matrix‐free implementations of test problems show that both new techniques offer useful, robust and black‐box solution strategies. In addition, they show that the new techniques are often more efficient in matrix‐free environment than either recomputing the preconditioner from scratch for every linear system of the sequence or than freezing the preconditioner throughout the whole sequence. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We present an approach and numerical results for a new formulation modeling immiscible compressible two-phase flow in heterogeneous porous media with discontinuous capillary pressures. The main feature of this model is the introduction of a new global pressure, and it is fully equivalent to the original equations. The resulting equations are written in a fractional flow formulation and lead to a coupled degenerate system which consists of a nonlinear parabolic (the global pressure) equation and a nonlinear diffusion–convection one (the saturation equation) with nonlinear transmission conditions at the interfaces that separate different media. The resulting system is discretized using a vertex-centred finite volume method combined with pressure and flux interface conditions for the treatment of heterogeneities. An implicit Euler approach is used for time discretization. A Godunov-type method is used to treat the convection terms, and the diffusion terms are discretized by piecewise linear conforming finite elements. We present numerical simulations for three one-dimensional benchmark tests to demonstrate the ability of the method to approximate solutions of water–gas equations efficiently and accurately in nuclear underground waste disposal situations.  相似文献   

11.
As a first endeavor, a mixed differential quadrature (DQ) and finite element (FE) method for boundary value structural problems in the context of free vibration and buckling analysis of thick beams supported on two-parameter elastic foundations is presented. The formulations are based on the two-dimensional theory of elasticity. The problem domain along axial direction is discretized using finite elements. The resulting system of equations and the related boundary conditions are discretized in the thickness direction and in strong-form using DQM. The method benefits from low computational efforts of the DQ in conjunction with the effectiveness of the FE method in general geometry and systematic boundary treatment resulting in highly accurate and fast convergence behavior solution. The boundary conditions at the top and bottom surface of the beams are implemented accurately. The presented formulations provide an effective analysis tool for beams free of shear locking. Comparisons are made with results from elasticity solutions as well as higher-order beam theory.  相似文献   

12.
13.
Abstract In this paper, a dissipative Zakharov equations are discretized by difference method.We make priorestimates for the algebric system of equations. It is proved that for each mesh size,there exist attractors forthe discretized system.The bounds of the Hausdorff dimensions of the discrete attractors are obtained,and thevarious bounds are dependent of the mesh sizes.  相似文献   

14.
考虑一端固定 ,一端在 van der Pol自激励边界反馈下 Euler-Bernoulli梁的动力行为 .首先设计梁方程的有限元离散格式 ,然后对选定的初始条件计算振动能量的终极变化 .数值结果表明 ,当反馈增益常数由小到大变化时 ,振动能量的变化经历慢周期 ,快周期 ,混沌 ,然后再回到周期振动的过程 .为进一步的理论研究提供了直观的数值表示 .  相似文献   

15.
Multidimensional free boundary problems for elliptic and parabolicdifferential equations, among them one phase Stefan problems,are partially discretized with the method of lines. The multi-pointfree boundary problem for the resulting system of second orderordinary differential equations is solved iteratively with anSOR type iteration. At each step of this iteration a free boundaryproblem for a single ordinary differential equation must besolved for which an initial value technique is used. The methodcan effectively cope with quite general space and time dependentfree surface conditions.  相似文献   

16.
Summary. We propose a stable and conservative finite difference scheme to solve numerically the Cahn-Hilliard equation which describes a phase separation phenomenon. Numerical solutions to the equation is hard to obtain because it is a nonlinear and nearly ill-posed problem. We design a new difference scheme based on a general strategy proposed recently by Furihata and Mori. The new scheme inherits characteristic properties, the conservation of mass and the decrease of the total energy, from the equation. The decrease of the total energy implies boundedness of discretized Sobolev norm of the solution. This in turn implies, by discretized Sobolev's lemma, boundedness of max norm of the solution, and hence the stability of the solution. An error estimate for the solution is obtained and the order is . Numerical examples demonstrate the effectiveness of the proposed scheme. Received July 22, 1997 / Revised version received October 19, 1999 / Published online August 2, 2000  相似文献   

17.
Stephan Weller 《PAMM》2014,14(1):855-856
In many engineering applications, free surface or two-phase flows are discretized in time with an explicit decoupling of geometry and fluid flow. Such a strategy leads to a capillary CFL condition of the form [3]. For the case of surface tension dominated flows (i.e. high Weber number We) this can dictate infeasibly small time steps. As an alternative we suggest a Galerkin method in time based on the discontinuous Galerkin method of first order (dG(1)). For this choice, an energy estimate can be proved [7], so unconditional stability of the method is given. While for ODEs or parabolic PDEs the method is of third order at the discrete points in time tn [4], in the case of free surface flows second order convergence can still be achieved. Numerical examples using the Arbitrary Lagrangian Eulerian (ALE) method for both capillary one-phase and two-phase flow demonstrate this convergence order. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We consider two-dimensional interior wave propagation problems with vanishing initial and mixed boundary conditions, reformulated as a system of two boundary integral equations with retarded potential. These latter are then set in a weak form, based on a natural energy identity satisfied by the solution of the differential problem, and discretized by the related energetic Galerkin boundary element method. Numerical results are presented and discussed.  相似文献   

19.
A semidiscretization based method for solving Hamiltonian partial differential equations is proposed in this article. Our key idea consists of two approaches. First, the underlying equation is discretized in space via a selected finite element method and the Hamiltonian PDE can thus be casted to Hamiltonian ODEs based on the weak formulation of the system. Second, the resulting ordinary differential system is solved by an energy‐preserving integrator. The relay leads to a fully discretized and energy‐preserved scheme. This strategy is fully realized for solving a nonlinear Schrödinger equation through a combination of the Galerkin discretization in space and a Crank–Nicolson scheme in time. The order of convergence of our new method is if the discrete L2‐norm is employed. An error estimate is acquired and analyzed without grid ratio restrictions. Numerical examples are given to further illustrate the conservation and convergence of the energy‐preserving scheme constructed.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1485–1504, 2016  相似文献   

20.
Buckling and free vibration analyses of nonlocal axially functionally graded Euler nanobeams is the main objective of this paper. Due to its simplicity, the Eringen's differential constitutive model is adopted for describing the nonlocal size dependency of nanostructure beam. The nonlocal equilibrium equation is derived using the principle of the minimum potential energy principle, and discretized by using the link-spring model known in literature as Hencky bar-chain model. The general applicability of the proposed approach allows analyses of functional graded microbeams without any restriction on variability, boundary and loading conditions. A comparison with results available in the literature shows the reliability of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号