首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The problem on the stress–strain state near a mode I crack in an infinite plate is solved in the frame of a cohesive zone model. The complex variable method of Muskhelishvili is used to obtain the crack opening displacements caused by the cohesive traction, which models the failure zone at the crack tip, as well as by the external load. The finite stress condition and logarithmic singularity of the derivative of the separation with respect to the coordinate at the tip of a physical crack are taken into account.The cohesive traction distribution is sought in a piecewise linear form, nodal values of which are being numerically chosen to satisfy the traction-separation law. According to this law, the cohesive traction is coupled with the corresponding separation and fracture toughness. The tips of the physical crack and cohesive zone (geometric variables) along with the discrete cohesive traction are used as the problem parameters determining the stress-strain state. If the crack length is included in the set, then the critical crack size can be found for the given loading intensity.The obtained determining system of equations is solved numerically. To find the initial point for a standard numerical algorithm, the asymptotic determining system is derived. In this system, the geometric variables can be easily eliminated, which make it possible to linearize the system.In the numerical examples, the one-parameter traction-separation laws are used. Influence of the shape parameters of the law on the critical crack size and the corresponding cohesive length is studied. The possibility of using asymptotic solutions for determining the critical parameters is analysed. It is established that the critical crack length slightly depends on the shape parameter, while the cohesive length shows a strong dependence on the shape of cohesive laws.  相似文献   

2.
Markus Peters  Klaus Hackl 《PAMM》2006,6(1):189-190
The XFEM is known to approximate the displacements and stresses around a crack tip in a very efficient way. But as we will present in this paper we have to deal with a phenomenon coming along with this method that compels us to use higher order shape functions for those elements that are enriched by the crack tip functions. For the computation of the stress–intensity–factors we are using a J–integral over a circular domain Ω. The accuracy of the results depend on • the radius of Ω • the number of elements used in the XFEM computation • the number of nodes which were enriched by the crack tip functions (number of layers) and • the shape functions which were used for the standard FE term For more information about the XFEM we refer to [1]. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
分析了K型焊接管状接头受轴向和面外弯曲载荷作用下的随机疲劳问题。通过将焊趾处的表面裂纹的初始尺寸和材料常数作为随机变量处理,并计及焊缝的影响,共产生500个随机样本,最终得到裂纹扩展寿命和裂纹形状变化影响的统计计算结果,并与有关实验数据比较,给予了回归分析。同时,也考察了裂纹扩展规律。  相似文献   

5.
Masaru Ikehata  Hiromichi Itou 《PAMM》2007,7(1):1090805-1090806
In solid mechanics, nondestructive testing has been an important technique in gathering information about unknown cracks, or defects in material. From a mathematical point of view, this is described as an inverse problem of partial differential equations, that is, the problem is to extract information about the location and shape of an unknown crack from the surface displacement field and traction on the boundary of the elastic material. By using the enclosure method introduced by Prof. Ikehata we can derive the extraction formula of an unknown linear crack from a single set of measured boundary data. Then, we need to have precise properties of a solution of the corresponding boundary value problem; for instance, an expansion formula around the crack tip. In this paper we consider the inverse problem concentrating on this point. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In the paper we consider elliptic boundary problems in domains having cuts (cracks). The non-penetration condition of inequality type is prescribed at the crack faces. A dependence of the derivative of the energy functional with respect to variations of crack shape is investigated. This shape derivative can be associated with the crack propagation criterion in the elasticity theory. We analyze an optimization problem of finding the crack shape which provides a minimum of the energy functional derivative with respect to a perturbation parameter and prove a solution existence to this problem.  相似文献   

7.
Here the numerical simulation of some plane Lamé problem with a rectilinear crack under non‐penetration condition is presented. The corresponding solids are assumed to be isotropic and homogeneous as well as bonded. The non‐linear crack problem is formulated as a variational inequality. We use penalty iteration and the finite‐element method to calculate numerically its approximate solution. Applying analytic formulas obtained from shape sensitivity analysis, we calculate then energetic and stress characteristics of the solution, and describe the quasistatic propagation of the crack under linear loading. The results are presented in comparison with the classical, linear crack problem, when interpenetration between the crack faces may occur. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Using a self-similar variables, an asymptotic investigation is carried out into the stress fields and the rates of creep deformations and degree of damage close to the tip of a tensile crack under creep conditions in a coupled (creep - damage) plane formulation of the problem. It is shown that a domain of completely damaged material (DCDM) exists close to the crack tip. The geometry of this domain is determined for different values of the material parameters appearing in the constitutive relations of the Norton power law in the theory of steady-state creep and a kinetic equation which postulates a power law for the damage accumulation. It is shown that, if the boundary condition at the point at infinity is formulated as the condition of asymptotic approximation to the Hutchinson–Rice-Rosengren solution [Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 1968;16(1):13–31; Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids. 1968;16(1):1–12], then the boundaries of the DCDM, which are defined by means of binomial and trinomial expansions of the continuity parameter, are substantially different with respect to their dimension and shape. A new asymptotic of the for stress field, which determines the geometry of the DCDM and leads to close configurations of the DCDM constructed using binomial and trinomial asymptotic expansions of the continuity parameter, are established by an asymptotic analysis and a numerical solution of the non-linear eigenvalue problem obtained.  相似文献   

9.
Separation of variables is a well‐known technique for solving differential equations. However, it is seldom used in practical applications since it is impossible to carry out a separation of variables in most cases. In this paper, we propose the amplitude–shape approximation (ASA) which may be considered as an extension of the separation of variables method for ordinary differential equations. The main idea of the ASA is to write the solution as a product of an amplitude function and a shape function, both depending on time, and may be viewed as an incomplete separation of variables. In fact, it will be seen that such a separation exists naturally when the method of lines is used to solve certain classes of coupled partial differential equations. We derive new conditions which may be used to solve the shape equations directly and present a numerical algorithm for solving the resulting system of ordinary differential equations for the amplitude functions. Alternatively, we propose a numerical method, similar to the well‐established exponential time differencing method, for solving the shape equations. We consider stability conditions for the specific case corresponding to the explicit Euler method. We also consider a generalization of the method for solving systems of coupled partial differential equations. Finally, we consider the simple reaction diffusion equation and a numerical example from chemical kinetics to demonstrate the effectiveness of the method. The ASA results in far superior numerical results when the relative errors are compared to the separation of variables method. Furthermore, the method leads to a reduction in CPU time as compared to using the Rosenbrock semi‐implicit method for solving a stiff system of ordinary differential equations resulting from a method of lines solution of a coupled pair of partial differential equations. The present amplitude–shape method is a simplified version of previous ones due to the use of a linear approximation to the time dependence of the shape function. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Slav Dimitrov  Thomas Bhlke 《PAMM》2008,8(1):10203-10204
In this paper we address the resolution of two important issues arising in the context of the relaxed variational formulation of the incremental free–boundary value problem of brittle fracture. First issue, is how by recasting the formulation into a discrete, minimum–maximum problem one can avoid the undesirable scale effects expressed in terms of the characteristic size and domain–shape dependence of the calculated minimum; second, how by a remeshing procedure in combination with a domain–shape update for tracking the propagating 0–th level set one can reconstruct the crack surface. We finally illustrate our approach by a geometrically linear 2–dimensional example for crack propagation in an initially isotropic brittle solid. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
This paper considers shape sensitivity analysis for the Laplace-Beltrami operator formulated on a two-dimensional manifold with a fracture. We characterize the shape gradient of a functional as a bounded measure on the manifold and decompose it into a “distributed gradient” supported on the manifold, plus a singular part that we derive as the limit of a “jump” through the crack and Dirac measures at the crack extremities. The important point is that we introduce a technique that is not dimension dependent, and makes no use of classical arguments such as the maximum principle or continuation uniqueness. The technique makes use of a family of envelopes surrounding the fracture which enable us to relax certain terms and to overcome the lack of regularity resulting from the presence of the fracture. We use the min-max differentiation in order to avoid taking the derivative of the state equation and to manage the crack's singularities. Therefore, we write the functional in a min-max formulation on a space which takes into account the hidden boundary regularity established by the tangential extractor method.  相似文献   

12.
Charlotte Kuhn  Ralf Müller 《PAMM》2010,10(1):121-122
Sharp interface material models can be related to phase field models by introducing an order parameter, whose value is assigned to the different phases of a material. The elastic material law is coupled to the evolution equation of the order parameter and cracking is addressed as a phase transition problem instead of a moving boundary value problem. A regularization parameter ϵ controls the width of the diffuse cracks represented by the order parameter and the underlying sharp interface model can be recovered from the phase field model by the limit ϵ → 0. However, in numerical simulations using standard finite elements with linear shape functions, the minimum value of ϵ is restricted by the grid size and therefore the discretization of the crack field requires extensive mesh refinement for small values of ϵ. In this work, we construct special 2d shape functions which take into account the exponential character of the crack field and its dependence on the parameter ϵ. Especially in simulations with small values of ϵ and a rather coarse mesh, the elements with exponential shape functions perform significantly better than standard linear elements. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The 3D‐elasticity model of a solid with a plane crack under the stress‐free boundary conditions at the crack is considered. We investigate variations of a solution and of energy functionals with respect to perturbations of the crack front in the plane. The corresponding expansions at least up to the second‐order terms are obtained. The strong derivatives of the solution are constructed as an iterative solution of the same elasticity problem with specified right‐hand sides. Using the expansion of the potential and surface energy, we consider an approximate quadratic form for local shape optimization of the crack front defined by the Griffith criterion. To specify its properties, a procedure of discrete optimization is proposed, which reduces to a matrix variational inequality. At least for a small load we prove its solvability and find a quasi‐static model of the crack growth depending on the loading parameter. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
We consider the weak solution of the Laplace equation in a planar domain with a straight crack, prescribing a homogeneous Neumann condition on the crack and a nonhomogeneous Dirichlet condition on the rest of the boundary. For every k we express the k-th derivative of the energy with respect to the crack length in terms of a finite number of coefficients of the asymptotic expansion of the solution near the crack tip and of a finite number of other parameters, which only depend on the shape of the domain.  相似文献   

15.
We consider a two dimensional elastic isotropic body with a curvilinear crack. The formula for the derivative of the energy functional with respect to the crack length is discussed. It is proved that this derivative is independent of the crack path provided that we consider quite smooth crack propagation shapes. An estimate for the derivative of the energy functional being uniform with respect to the crack propagation shape is derived.  相似文献   

16.
We consider a two dimensional elastic isotropic body with a curvilinear crack. The formula for the derivative of the energy functional with respect to the crack length is discussed. It is proved that this derivative is independent of the crack path provided that we consider quite smooth crack propagation shapes. An estimate for the derivative of the energy functional being uniform with respect to the crack propagation shape is derived.  相似文献   

17.
Under consideration is a homogeneous three-dimensional body with a crack in the form of a smooth surface. We impose some inequality constraints on the crack edges that describe their mutual nonpenetration. According to the Griffith criterion, the crack begins to propagate when the derivative of the energy functional with respect to the virtual increment of the crack surface area reaches a certain critical value. The value of this derivative depends, in particular, on the crack shape. The crack shape is determined that minimizes the value of the derivative of the energy functional; more precisely, the existence of a solution to the corresponding optimal control problem is proved.  相似文献   

18.
The paper is concerned with the control of the shape of rigid and elastic inclusions and crack paths in elastic bodies. We provide the corresponding problem formulations and analyze the shape sensitivity of such inclusions and cracks with respect to different perturbations. Inequality type boundary conditions are imposed at the crack faces to provide a mutual nonpenetration between crack faces. Inclusion and crack shapes are considered as control functions and control objectives, respectively. The cost functional, which is based on the Griffith rupture criterion, characterizes the energy release rate and provides the shape sensitivity with respect to a change of the geometry. We prove an existence of optimal solutions.  相似文献   

19.
K. Kolk  G. Mishuris  G. Kuhn 《PAMM》2004,4(1):284-285
A new design of a fracture mechanics specimen is presented. It ensures a valid square‐root singularity along the whole threedimensional crack front under mode‐I conditions. Within the proposed concept it is possible to adjust the angle between the crack front and the free surface in advance. Therefore, the shape of the whole crack front can be influenced in a desired manner. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
M. Peters  U. Hoppe  K. Hackl 《PAMM》2004,4(1):366-367
The transition from microscale damage phenomena to crack initiation and growth at the macroscale is an important mechanism which constrains the lifetime of concrete structures. Analysing crack growth using the finite element method without enhancement of the shape functions is possible only by continuously updating the corresponding meshes, which constitutes a significant computational effort. But even then the results can be substantially mesh–dependent and hard to interpret. The extended Finite Element Method (XFEM) uses additional discontinuous shape–functions and is one possibility to overcome these problems. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号