首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Any statistical analysis or decision analysis contains numerical inputs of which we are unsure. Some of our uncertainty arises from physical randomness which we can model in various ways, ideally through probability. Some uncertainty relates to judgemental estimates of quantities about which we may be unsure in many different respects. There are other uncertainties involved, however: some relate to ambiguity and imprecision of meaning; some relate to lack of clarity in the objectives which the analysis seeks to meet; some relate to the numerical accuracy of calculations. How should the uncertainty arising from ambiguity be modelled? Other uncertainties can also impact on an analysis. Why is the analysis being conducted? Are the objectives clear?  相似文献   

2.
This paper presents the fuzzy control of a class of multivariable nonlinear systems subject to parameter uncertainties. The nonlinear plant tackled in this paper is an nth-order nonlinear system with n inputs. If the input matrix B inside the fuzzy plant model is invertible, a fuzzy controller can be designed such that the states of the closed-loop system will follow those of a user-defined stable reference model despite the presence of parameter uncertainties. A numerical example will be given to show the design procedures and the merits of the proposed fuzzy controller.  相似文献   

3.
Emergency logistics is an essential component of post-disaster relief campaigns. However, there are always various uncertainties when making decisions related to planning and implementing post-disaster relief logistics. Considering the particular environmental conditions during post-disaster relief after a catastrophic earthquake in a mountainous area, this paper proposes a stochastic model for post-disaster relief logistics to guide the tactical design for mobilizing relief supply levels, planning initial helicopter deployments, and creating transportation plans within the disaster region, given the uncertainties in demand and transportation time. We then introduce a robust optimization approach to cope with these uncertainties and deduce the robust counterpart of the proposed stochastic model. A numerical example based on disaster logistics during the Great Sichuan Earthquake demonstrates that the model can help post-disaster managers to determine the initial deployments of emergency resources. Sensitivity analyses explore the trade-off between optimization and robustness by varying the robust optimization parameter values.  相似文献   

4.
This paper addresses the problem of adaptive stabilization of uncertain unified chaotic systems with nonlinear input in the sector form. A novel representation of nonlinear input function, that is, a linear input with bounded time-varying coefficient, is firstly established. Then, an adaptive control scheme is proposed based on the new nonlinear input model. By using Barbalat’s lemma, the asymptotic stability of the closed-loop system is proved in spite of system uncertainties, external disturbance and input nonlinearity. One of the advantages of the proposed design method is that the prior knowledge on the plant parameter, the bound parameters of the uncertainties and the slope parameters inside the sector nonlinearity is not required. Finally, numerical simulations are performed to verify the analytical results.  相似文献   

5.
Andreas Gaull  Edwin Kreuzer 《PAMM》2008,8(1):10885-10886
We address qualitative characteristics of dynamical systems and their approximation using set–valued numerical methods, where we aim at robust results. In this spirit, model uncertainties are incorporated into the problem formulation as outcomes of an external stochastic process. The systems under consideration are described in terms of finite state Markov chains. An example serves to illustrate the procedure. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this paper, a new and systematic method for designing robust digital controllers for uncertain nonlinear systems with structured uncertainties is presented. In the proposed method, a controller is designed in terms of the optimal linear model representation of the nominal system around each operating point of the trajectory, while the uncertainties are decomposed such that the uncertain nonlinear system can be rewritten as a set of local linear models with disturbed inputs. Applying conventional robust control techniques, continuous-time robust controllers are first designed to eliminate the effects of the uncertainties on the underlying system. Then, a robust digital controller is obtained as the result of a digital redesign of the designed continuous-time robust controller using the state-matching technique. The effectiveness of the proposed controller design method is illustrated through some numerical examples on complex nonlinear systems––chaotic systems.  相似文献   

7.
The key idea of the proposed method is the use of the equivalent variables named as evidence-based fuzzy variables, which are special evidence variables with fuzzy focal elements. On the basis of the equivalent variables, an uncertainty quantification model is established, in which the unified probabilistic information related to the uncertain responses of engineering systems can be computed with the aid of the fuzziness discretization and reconstruction, the belief and plausibility measures analysis, and the interval response analysis. Monte Carlo simulation is presented as a reference method to validate the accuracy of the proposed method. The proposed method then is extended to perform squeal instability analysis involving different types of epistemic uncertainties. To illustrate the feasibility and effectiveness of the proposed method, seven numerical examples of disc brake instability analysis involving different epistemic uncertainties are provided and analyzed. By conducting appropriate comparisons with reference results, the high accuracy and efficiency of the proposed method on quantifying the effects of different epistemic uncertainties on brake instability are demonstrated.  相似文献   

8.
This paper considers the problem of robust stability of neutral systems with mixed time-varying delays and nonlinear perturbations. Two type uncertainties such as nonlinear time-varying parameter perturbations and norm-bounded uncertainties have been discussed. Based on the new Lyapunov–Krasovskii functional with triple integral terms, some integral inequalities and convex combination technique, a new delay-dependent stability criterion for the system is established in terms of linear matrix inequalities (LMIs). Finally, four numerical examples are given to illustrate the effectiveness and an improvement over some existing results in the literature with the proposed results.  相似文献   

9.
We present advances in structure-exploiting non-intrusive polynomial chaos methods for the numerical solution of nonlinear optimal control problems with parametric uncertainties. In particular, we make use of the special structure induced by the spectral projection to reuse model derivatives and exploit sparsity information leading to a fast automatic sensitivity generation. This greatly reduces the computational effort of Newton-type methods for the solution of the resulting high-dimensional surrogate problem. The results are complemented by a complexity comparison and a numerical case study. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A new mathematical model for finding the optimal harvesting policy of an inland fishery resource under incomplete information is proposed in this paper. The model is based on a stochastic control formalism in a regime‐switching environment. The incompleteness of information is due to uncertainties involved in the body growth rate of the fishery resource: a key biological parameter. Finding the most cost‐effective harvesting policy of the fishery resource ultimately reduces to solving a terminal and boundary value problem of a Hamilton‐Jacobi‐Bellman equation: a nonlinear and degenerate parabolic partial differential equation. A simple finite difference scheme for solving the equation is then presented, which turns out to be convergent and generates numerical solutions that comply with certain theoretical upper and lower bounds. The model is finally applied to the management of Plecoglossus altivelis, a major inland fishery resource in Japan. The regime switching in this case is due to the temporal dynamics of benthic algae, the main food of the fish. Model parameter values are identified from field measurement results in 2017. Our computational results clearly show the dependence of the optimal harvesting policy on the river environmental and biological conditions. The proposed model would serve as a mathematical tool for fishery resource management under uncertainties.  相似文献   

11.
A robust structural optimization scheme as well as an optimization algorithm are presented based on the robustness function. Under the uncertainties of the external forces based on the info-gap model, the maximization of the robustness function is formulated as an optimization problem with infinitely many constraints. By using the quadratic embedding technique of uncertainty and the S-procedure, we reformulate the problem into a nonlinear semidefinite programming problem. A sequential semidefinite programming method is proposed which has a global convergent property. It is shown through numerical examples that optimum designs of various linear elastic structures can be found without difficulty.The authors are grateful to the Associate Editor and two anonymous referees for handling the paper efficiently as well as for helpful comments and suggestions.  相似文献   

12.
Runzi Luo  Yanhui Zeng 《Complexity》2016,21(Z1):573-583
This article addresses the adaptive control of chaotic systems with unknown parameters, model uncertainties, and external disturbance. We first investigate the control of a class of chaotic systems and then discuss the control of general chaotic systems. Based on the backstepping‐like procedure, some novel criteria are proposed via adaptive control scheme. As an example to illustrate the application of the proposed method, the control and synchronization of the modified Chua's chaotic system is also investigated via a single input. Some numerical simulations are given to demonstrate the robustness and efficiency of the proposed approach. © 2016 Wiley Periodicals, Inc. Complexity 21: 573–583, 2016  相似文献   

13.
Long-term planning for electric power systems, or capacity expansion, has traditionally been modeled using simplified models or heuristics to approximate the short-term dynamics. However, current trends such as increasing penetration of intermittent renewable generation and increased demand response requires a coupling of both the long and short term dynamics. We present an efficient method for coupling multiple temporal scales using the framework of singular perturbation theory for the control of Markov processes in continuous time. We show that the uncertainties that exist in many energy planning problems, in particular load demand uncertainty and uncertainties in generation availability, can be captured with a multiscale model. We then use a dimensionality reduction technique, which is valid if the scale separation present in the model is large enough, to derive a computationally tractable model. We show that both wind data and electricity demand data do exhibit sufficient scale separation. A numerical example using real data and a finite difference approximation of the Hamilton–Jacobi–Bellman equation is used to illustrate the proposed method. We compare the results of our approximate model with those of the exact model. We also show that the proposed approximation outperforms a commonly used heuristic used in capacity expansion models.  相似文献   

14.
In this paper, a novel technique based on impulsive fuzzy T–S model is proposed for controlling chaotic systems with parameter uncertainties. According to this new model, a unified methodology for establishing robust stability, asymptotic stability and exponential stability of impulsive controllers is developed. Various robust stability conditions are presented in the form of linear matrix inequalities (LMI). A simple iterative algorithm is also provided for calculating design parameters based on LMI techniques. Finally, a typical design procedure is developed by using well-known chaotic systems for illustration, accompanied by several numerical simulations to demonstrate the validity of the proposed methodology.  相似文献   

15.
Facility location-allocation (FLA) problem has been widely studied by operational researchers due to its many practical applications. Many researchers have studied the FLA problem in a deterministic environment. However, the models they proposed cannot accommodate satisfactorily various customer demands in the real world. Thus, we consider the FLA problem with uncertainties. In this paper, a new model named α-cost model under the Hurwicz criterion is presented with fuzzy demands. In order to solve this model, the simplex algorithm, fuzzy simulations and a genetic algorithm are integrated to produce a hybrid intelligent algorithm. Finally, some numerical examples are presented to illustrate the effectiveness of the proposed algorithm.  相似文献   

16.
This paper studies coordination mechanisms in a supply chain which consists of two suppliers with capacity uncertainties selling differential yet substitutable products through a common retailer who faces price-sensitive random demand of these two products. We develop in a noncompetitive setting three coordination models – revenue sharing, return policy, and combination of revenue sharing and return policy – and contrast them with a basic and uncoordinated model. We are able to establish the ordinal relationship among the retailer’s ordering and pricing decisions and analytically compare the performances between certain models when two suppliers are identical. We find that the retailer’s ordering and pricing decisions in the model with return policy in the case of identical suppliers are independent of demand or supply uncertainty. Our numerical results reveal that the performances of coordination models in the case of nonidentical suppliers resemble those in the case of identical suppliers. We find that the retailer will place a larger order quantity in models where her average cost per unit sold is smaller. We also find that product substitutability and uncertainties have different effects on chain performances.  相似文献   

17.
This study presents an interval de Novo programming (IDNP) approach for the design of optimal water-resources-management systems under uncertainty. The model is derived by incorporating the existing interval programming and de Novo programming, allowing uncertainties represented as intervals within the optimization framework. The developed IDNP approach has the advantages in constructing optimal system design via an ideal system by introducing the flexibility toward the available resources in the system constraints. A simple numerical example is introduced to illustrate the IDNP approach. The IDNP is then applied to design an inexact optimal system with budget limit instead of finding the optimum in a given system with fixed resources in a water resources planning case. The results demonstrate that the developed method efficiently produces stable solutions under different objectives. Optimal supplies of good-quality water are obtained in considering different revenue targets of municipal–industrial–agricultural competition under a given budget.  相似文献   

18.
This paper presents a new approach to the analysis of asymptotic stability of artificial neural networks (ANN) with multiple time-varying delays subject to polytope-bounded uncertainties. This approach is based on the Lyapunov–Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique with the use of a recent Leibniz–Newton model based transformation without including any additional dynamics.Three examples with numerical simulations are used to illustrate the effectiveness of the proposed method. The first example considers the neural network with multiple time-varying delays, which may be seen as a particular case of the second example where it is subject to uncertainties and multiple time-varying delays. Finally, the third example analyzes the stability of the neural network with higher numbers of neurons subject to a single time-delay. The Hopf bifurcation theory is used to verify the stability of the system when the origin falls into instability in the bifurcation point.  相似文献   

19.
《Applied Mathematical Modelling》2014,38(15-16):3706-3723
This paper proposes a new design optimization framework for suspension systems considering the kinematic characteristics, such as the camber angle, caster angle, kingpin inclination angle, and toe angle in the presence of uncertainties. The coordinates of rear inner hardpoints of upper control arm and lower control arm of double wishbone suspension are considered as the design variables, as well as the uncertain parameters. In this way, the actual values of the design variables will vary surrounding their nominal values. The variations result in uncertainties that are described as interval variables with lower and upper bounds. The kinematic model of the suspension is developed in software ADAMS. A high-order response surface model using the zeros of Chebyshev polynomials as sampling points is established, termed as Chebyshev metamodel, to approximate the kinematic model. The Chebyshev meta-model is expected to provide higher approximation accuracy. Interval uncertain optimization problems usually involve a nested computationally expensive double-loop optimization process, in which the inner loop optimization is to calculate the bounds of the interval design functions, while the outer loop is to search the optimum for the deterministic optimization problem. To reduce the computational cost, the interval arithmetic is introduced in the inner loop to improve computational efficiency without compromising numerical accuracy. The numerical results show the effectiveness of the proposed design method.  相似文献   

20.
This paper deals with the problem of guaranteed cost control for uncertain neutral stochastic systems. The parameter uncertainties are assumed to be time-varying but norm-bounded. Dynamic output feedback controllers are designed such that, for all admissible uncertainties, the resulting closed-loop system is mean-square asymptotically stable and an upper bound on the closed-loop value of the cost function is guaranteed. By employing a linear matrix inequality (LMI) approach, a sufficient condition for the solvability of the underlying problem is obtained. A numerical example is provided to demonstrate the potential of the proposed techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号