首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HE  Han-Xin 《理论物理通讯》2009,(8):292-294
The transverse symmetry transformations associated with the normal symmetry transformations are proposed to build the transverse constraints on the basic vertices in gauge theories. I show that, while the BRST symmetry in non-Abelian gauge theory QCD (Quantum Chromodynamics) leads to the Slavnov-Taylor identity for the quark-gluon vertex which constrains the longitudinal part of the vertex, the transverse symmetry transformation associated with the BRST symmetry enables to derive the transverse Slavnov-Taylor identity for the quark-gluon vertex, which constrains the transverse part of the quark-gluon vertex from the gauge symmetry of QCD.  相似文献   

2.
The infrared behavior of the quark-gluon vertex of quenched Landau gauge QCD is studied by analyzing its Dyson-Schwinger equation. Building on previously obtained results for Green functions in the Yang-Mills sector, we analytically derive the existence of power-law infrared singularities for this vertex. We establish that dynamical chiral symmetry breaking leads to the self-consistent generation of components of the quark-gluon vertex forbidden when chiral symmetry is forced to stay in the Wigner-Weyl mode. In the latter case the running strong coupling assumes an infrared fixed point. If chiral symmetry is broken, either dynamically or explicitly, the running coupling is infrared divergent. Based on a truncation for the quark-gluon vertex Dyson-Schwinger equation which respects the analytically determined infrared behavior, numerical results for the coupled system of the quark propagator and vertex Dyson-Schwinger equation are presented. The resulting quark mass function as well as the vertex function show only a very weak dependence on the current quark mass in the deep infrared. From this we infer by an analysis of the quark-quark scattering kernel a linearly rising quark potential with an almost mass independent string tension in the case of broken chiral symmetry. Enforcing chiral symmetry does lead to a Coulomb type potential. Therefore, we conclude that chiral symmetry breaking and confinement are closely related. Furthermore, we discuss aspects of confinement as the absence of long-range van der Waals forces and Casimir scaling. An examination of experimental data for quarkonia provides further evidence for the viability of the presented mechanism for quark confinement in the Landau gauge.  相似文献   

3.
A topological gauge invariant Lagrangian for Seiberg--Witten monopoleequations is constructed. The action is invariant under a huge classof gauge transformations which after BRST fixing leads to the BRSTinvariant action associated to Seiberg--Witten monopole topologicaltheory. The supersymmetric transformation of the fields involved inthe construction is obtained from the nilpotent BRST algebra.  相似文献   

4.
In this paper we will discuss Faddeev-Popov method for gauge theories with a general form of gauge symmetry in an abstract way. We will then develope a general formalism for dealing with the BRST symmetry. This formalism will make it possible to analyse the BRST symmetry for any theory.  相似文献   

5.
Recently a new type of quadratic gauge was introduced in QCD in which the degrees of freedom are suggestive of a phase of abelian dominance. In its simplest form it is also free of Gribov ambiguity. However this gauge is not suitable for usual perturbation theory. The finite field dependent BRST (FFBRST) transformation is a method established to interrelate generating functionals for different effective versions of gauge fixed field theories. In this paper we propose a FFBRST transformation suitable for transforming the theory in the new quadratic gauge into the standard Lorenz gauge Faddeev–Popov version of the effective lagrangian. The task is made interesting by the fact that the effective lagrangian is invariant under two different BRST transformations which leads to suitable extension of the previous procedures to accomplish the required result. We are thus able to identify a field redefinition to go from a non-perturbative phase of QCD to perturbative QCD.  相似文献   

6.
In this paper the novel features of Yokoyama gaugeon formalism are stressed out for the theory of perturbative quantum gravity in the Einstein curved spacetime. The quantum gauge transformations for the theory of perturbative gravity are demonstrated in the framework of gaugeon formalism. These quantum gauge transformations lead to renormalised gauge parameter. Further, we analyse the BRST symmetric gaugeon formalism which embeds more acceptable Kugo–Ojima subsidiary condition. Further, the BRST symmetry is made finite and field-dependent. Remarkably, the Jacobian of path integral under finite and field-dependent BRST symmetry amounts to the exact gaugeon action in the effective theory of perturbative quantum gravity.  相似文献   

7.
We study the low-energy scattering of charmed (D) and strange (K) mesons by nucleons. The short-distance part of the interaction is due to quark-gluon interchanges derived from a model that realizes dynamical chiral symmetry breaking and confines color. The quark-gluon interaction incorporates a confining Coulomb-like potential extracted from lattice QCD simulations in Coulomb gauge and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The long-distance part of the interaction is due to single vector (??, ??) and scalar (??) meson exchanges. We show results for scattering cross-sections for isospin I?=?0 and I?=?1.  相似文献   

8.
The Galilean invariance of the Navier–Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi–Rouet–Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier–Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.  相似文献   

9.
By abstracting a connection between gauge symmetry and gauge identity on a noncommutative space, we analyse star (deformed) gauge transformations with the usual Leibniz rule as well as undeformed gauge transformations with a twisted Leibniz rule. Explicit structures of the gauge generators in either case are computed. It is shown that, in the former case, the relation mapping the generator with the gauge identity is a star deformation of the commutative space result. In the latter case, on the other hand, this relation gets twisted to yield the desired map.  相似文献   

10.
[1]R.T. Cahill and C.D. Roberts, Phys. Rev. D32 (1985)2419. [2]P.C. Tandy, Prog. Part. Nucl. Phys. 39 (1997) 117; C.D.Roberts, R.T. Chill, and J. Praschiflca, Ann. Phys. (N.Y.)188 (1988) 20; M.R. Frank, P.C. Tandy, and G. Fai, Phys.Rev. C43 (1991) 2808; M.R. Frank and P.C. Tandy, Phys.Rev. C49 (1994) 478; M.R. Frank and C.D. Roberts,Phys. Rev. C53 (1996) 390; P. Maris and C.D. Roberts,Phys. Rev. C56 (1997) 3369; C.W. Johnson and G. Fai,Phys. Rev C56 (1997) 3353; P. Maris, C.D. Roberts,and P.C. Tandy, Phys. Lett B420 (1998) 267; XiaoFu LU, Yu-Xin LIU, Hong-Shi ZONG and En-Guang ZHAO, Phys. Rev. C58 (1998) 1195; Hong-Shi ZONG,Xiao-Fu LU, Jian-Zhong GU, Chao-Hsi CHANG, and EnGuang ZHAO, Phys. Rev. C60 (.1999) 055208; Hong-Shi ZONG, Yu-Xin LIU, Xiao-Fu LU, Fan WANG, and EnGuang ZHAO, Commun. Theor. Phys. (Beijing, China)36 (2001) 187. [3]M.R. Frank and T. Meissner, Phys. Rev. C53 (1996)2410. [4]T. Meissner, Phys. Lett. B405 (1997) 8. [5]C.D. Roberts and A.G. Williams, Prog. Part. Nucl. Phys.33 (1994) 477, and the references therein. [6]H.B. Tang and R. J. Furnstahl, hep-ph/9502326. [7]M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys.B147 (1979) 385. [8]L. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rep.127 (1985) 1; S. Narison, QCD Spectral Sum Rules, World Scientific, Singapore (1989), and the rererences therein. [9]Hong-Shi ZONG, Jia-Lun PING, Hong-Ting YANG,Xiao-Fu LU, and Fan WANG, nuth-th/0201001. [10]C.D. Roberts, A.G. Williams, and G. Krein, Int. J. Mod.Phys. A7 (1992) 5607.  相似文献   

11.
Within the framework of the Becchi–Rouet–Stora–Tyutin (BRST) formalism, we demonstrate the existence of the novel off-shell nilpotent (anti-)dual-BRST symmetries in the context of a six (5+1)-dimensional (6D) free Abelian 3-form gauge theory. Under these local and continuous symmetry transformations, the total gauge-fixing term of the Lagrangian density remains invariant. This observation should be contrasted with the off-shell nilpotent (anti-)BRST symmetry transformations, under which, the total kinetic term of the theory remains invariant. The anticommutator of the above nilpotent (anti-)BRST and (anti-)dual-BRST transformations leads to the derivation of a bosonic symmetry in the theory. There exists a discrete symmetry transformation in the theory which provides a thread of connection between the nilpotent (anti-)BRST and (anti-)dual-BRST transformations. This theory is endowed with a ghost-scale symmetry, too. We discuss the algebra of these symmetry transformations and show that the structure of the algebra is reminiscent of the algebra of de Rham cohomological operators of differential geometry.  相似文献   

12.
The mixed quark-gluon condensate from the global color symmetry model is derived. It is shown that the mixed quark-gluon condensate depends explicitly on the gluon propagator. This interesting feature may be regarded as an additional constraint on the model of gluon propagator. The values of the mixed quark-gluon condensate from some ansatz for the gluon propagator are compared with those determined from QCD sum rules.  相似文献   

13.
The transverse vector vertex function in momentum space in four-dimensional QED is derived in terms of a set of transverse Ward-Takahashi relations for the vector and the axial-vector vertices in the case of massless fermion. It is demonstrated explicitly that the transverse vector vertex function derived this way to one-loop order leads to the same result as one obtained in perturbation theory. This provides a basic approach to determine the transverse part of basic vertex function from the symmetry relations of the system.  相似文献   

14.
The transverse vector vertex function in momentum space in four-dimensional QED is derived in terms of a set of transverse Ward-Takahashi relations for the vector and the axial-vector vertices in the case of massless fermion.It is demonstrated explicitly that the transverse vector vertex function derived this way to one-loop order leads to the same result as one obtained in perturbation theory. This provides a basic approach to determine the transverse part of basic vertex function from the symmetry relations of the system.  相似文献   

15.
We derive absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the 4D free Abelian 2-form gauge theory by exploiting the superfield approach to BRST formalism. The antisymmetric tensor gauge field of the above theory was christened as the “notoph” (i.e. the opposite of “photon”) gauge field by Ogievetsky and Palubarinov way back in 1966–67. We briefly outline the problems involved in obtaining the absolute anticonimutativity of the (anti-) BRST transformations and their resolution within the framework of geometrical superfield approach to BRST formalism. One of the highlights of our results is the emergence of a Curci-Ferrari type of restriction in the context of 4D Abelian 2-form (notoph) gauge theory which renders the nilpotent (anti-) BRST symmetries of the theory to be absolutely anticommutative in nature.  相似文献   

16.
The Einstein–Hilbert action in the context of higher derivative theories is considered for finding their BRST symmetries. Being a constraint system, the model is transformed in the minisuperspace language with the FRLW background and the gauge symmetries are explored. Exploiting the first order formalism developed by Banerjee et al. the diffeomorphism symmetry is extracted. From the general form of the gauge transformations of the field, the analogous BRST transformations are calculated. The effective Lagrangian is constructed by considering two gauge-fixing conditions. Further, the BRST (conserved) charge is computed, which plays an important role in defining the physical states from the total Hilbert space of states. The finite field-dependent BRST formulation is also studied in this context where the Jacobian for the functional measure is illustrated specifically.  相似文献   

17.
Within the framework of the Dyson-Schwinger equations in the axial gauge, and using a truncation procedure which respects the Ward-Takahashi identities, we study the effect that nonperturbative glue has on the quark propagator. We show that within this truncation scheme, the requirement of matching perturbative QCD at high momentum transfer leads to a multiplicatively renormalisable equation. Technically, the matching with perturbation theory is accomplished by the introduction of a transverse part to the quark-gluon vertex. In the case of an analytic gluon propagator, this truncation scheme can lead to chiral symmetry breaking only after the introduction of such a transverse vertex: massless solutions do not exist beyond a critical value of as. Using the gluon propagator that we previously obtained, we obtain small corrections to the quark propagator, which keeps a pole at the origin in the chiral phase.  相似文献   

18.
We investigate the infrared limit of the quantum equation of motion of the gauge boson propagator in various gauges and models with a BRST symmetry. We find that the saturation of this equation at low momenta distinguishes between the Coulomb, Higgs and confining phase of the gauge theory. The Coulomb phase is characterized by a massless gauge boson. Physical states contribute to the saturation of the transverse equation of motion of the gauge boson at low momenta in the Higgs phase, while the saturation is entirely due to unphysical degrees of freedom in the confining phase. This corollary to the Kugo–Ojima confinement criterion in linear covariant gauges also is sufficient for confinement in general covariant gauges with BRST and anti-BRST symmetry, maximal Abelian gauges with an equivariant BRST symmetry, non-covariant Coulomb gauge and in the Gribov–Zwanziger theory.  相似文献   

19.
In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.  相似文献   

20.
A generalized Yang-Mills model, which contains, besides the vector part Vμ, also a scalar part S, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of Nambu-Jona-Lasinio (NJL) mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills model. The combination of the generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号