首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have developed a numerical method for simulating viscous flow through a compliant closed tube, driven by a pair of fluid source and sink. As is natural for tubular flow simulations, the problem is formulated in axisymmetric cylindrical coordinates, with fluid flow described by the Navier-Stokes equations. Because the tubular walls are assumed to be elastic, when stretched or compressed they exert forces on the fluid. Since these forces are singularly supported along the boundaries, the fluid velocity and pressure fields become unsmooth. To accurately compute the solution, we use the velocity decomposition approach, according to which pressure and velocity are decomposed into a singular part and a remainder part. The singular part satisfies the Stokes equations with singular boundary forces. Because the Stokes solution is unsmooth, it is computed to second-order accuracy using the immersed interface method, which incorporates known jump discontinuities in the solution and derivatives into the finite difference stencils. The remainder part, which satisfies the Navier-Stokes equations with a continuous body force, is regular. The equations describing the remainder part are discretized in time using the semi-Lagrangian approach, and then solved using a pressure-free projection method. Numerical results indicate that the computed overall solution is second-order accurate in space, and the velocity is second-order accurate in time.  相似文献   

2.
An upright cylindrical container blasted into the rock is filled instantaneously with a warm liquid. Heat is transferred from the liquid into the surrounding rock and the open air. The temperature of the liquid and the surrounding rock is determined as a function of time.The differential equation and the auxiliary conditions of the transient heat conduction problem are Laplace transformed, the subsidiary equations are solved by two-dimensional relaxation, and the resulting temperature is obtained by means of numerical inversion of the Laplace transform.The results are presented numerically and graphically.  相似文献   

3.
A mathematical model of fluid flow across a rod bundle with volumetric heat generation has been built. The rods are heated with volumetric internal heat generation. To construct the model, a volume average technique (VAT) has been applied to momentum and energy transport equations for a fluid and a solid phase to develop a specific form of porous media flow equations. The model equations have been solved with a semi-analytical Galerkin method. The detailed velocity and temperature fields in the fluid flow and the solid structure have been obtained. Using the solution fields, a whole-section drag coefficient Cd and a whole-section Nusselt number Nu have also been calculated. To validate the developed solution procedure, the results have been compared to the results of a finite volume method. The comparison shows an excellent agreement. The present results demonstrate that the selected Galerkin approach is capable of performing calculations of heat transfer in a cross-flow where thermal conductivity and internal heat generation in a solid structure has to be taken into account. Although the Galerkin method has limited applicability in complex geometries, its highly accurate solutions are an important benchmark on which other numerical results can be tested.  相似文献   

4.
In the present study an analytical model has been presented to describe the transient temperature distribution and advancement of the thermal front generated due to the reinjection of heat depleted water in a heterogeneous geothermal reservoir. One dimensional heat transport equation in porous media with advection and longitudinal heat conduction has been solved analytically using Laplace transform technique in a semi infinite medium. The heterogeneity of the porous medium is expressed by the spatial variation of the flow velocity and the longitudinal effective thermal conductivity of the medium. A simpler solution is also derived afterwards neglecting the longitudinal conduction depending on the situation where the contribution to the transient heat transport phenomenon in the porous media is negligible. Solution for a homogeneous aquifer with constant values of the rock and fluid parameters is also derived with an aim to compare the results with that of the heterogeneous one. The effect of some of the parameters involved, on the transient heat transport phenomenon is assessed by observing the variation of the results with different magnitudes of those parameters. Results prove the heterogeneity of the medium, the flow velocity and the longitudinal conductivity to have great influence and porosity to have negligible effect on the transient temperature distribution.  相似文献   

5.
Based on the two‐dimensional stationary Oseen equation we consider the problem to determine the shape of a cylindrical obstacle immersed in a fluid flow from a knowledge of the fluid velocity on some arc outside the obstacle. First, we obtain a uniqueness result for this ill‐posed and non‐linear inverse problem. Then, for the approximate solution we propose a regularized Newton iteration scheme based on a boundary integral equation of the first kind. For a foundation of Newton‐type methods we establish the Fréchet differentiability of the solution to the Dirichlet problem for the Oseen equation with respect to the boundary and investigate the injectivity of the linearized mapping. Some numerical examples for the feasibility of the method are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a numerical analysis of the flow and heat transfer characteristics of natural convection in a micropolar fluid flowing along a vertical slender hollow circular cylinder with conduction effects. The nonlinear formulation governing equations and their associated boundary conditions are first cast into dimensionless forms by a local non-similar transformation. The resulting equations are then solved using the cubic spline collocation method and the finite difference scheme. This study investigates the effects of the conjugate heat transfer parameter, the micropolar parameter, and the Prandtl number on the flow and the thermal fields. The conjugate heat transfer parameter reduces the solid–liquid interfacial temperature, the skin friction factor and the local heat transfer rate. The effect of wall conduction on the local heat transfer rate, interfacial temperature and skin friction factor is found to be more pronounced in a system with a greater Prandtl number. Moreover, the current results are comparing with Newtonian fluid to obtain the important results of the heat transfer and flow characteristics on micropolar fluids. It shows that an increase in the interfacial temperature, a reduction in the skin friction factor, and a reduction in the local heat transfer rate are identified in the current micropolar fluid case.  相似文献   

7.
Computational models of a temperature field in cylindrical steel elements surfaced by the following methods: controlled pitch, spiral welding sequence and spiral welding sequence with swinging motion of the welding head are presented in the paper. The lateral surface of regenerated cylindrical object, subjected to the welding heat source, has been treated as a plane rolled on cylinder and temperature field of repeatedly surfaced plain massive body was solved. Temperature rises, caused by overlaying consecutive welding sequences and self-cooling of areas previously heated, were taken into consideration in the solution. The computations of the temperature field for continuous casting steel machine roll made of 13CrMo4 steel were carried out.  相似文献   

8.
瞬态导热分析需要考虑非傅立叶效应.通过对抛物型及双曲型热传导方程,以及耦合热传导方程后的波动方程的数值求解,研究了非傅立叶效应下导热过程中的波动响应.结果表明,双曲型热传导过程具有明显的波动特性,所引起的波动响应前沿值成倍提高,且呈现显著的跃变行为,而波动峰值外的部位围绕着初始值小幅波动.  相似文献   

9.
In this paper, we consider the shape inverse problem of a body immersed in the incompressible fluid governed by thermodynamic equations. By applying the domain derivative method, we obtain the explicit representation of the derivative of solution with respect to the boundary, which plays an important role in the inverse design framework. Moreover, according to the boundary parametrization technique, we present a regularized Gauss–Newton algorithm for the shape reconstruction problem. Finally, numerical examples indicate the proposed algorithm is feasible and effective for the low Reynolds numbers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
A new mathematical model of thermoelectric MHD theory has been constructed in the context of a new consideration of heat conduction with fractional orders. This model is applied to Stokes’ first problem for a conducting fluid with heat sources. Laplace transforms and state-space techniques [1] will be used to obtain the general solution for any set of boundary conditions. According to the numerical results and its graphs, conclusion about the new theory has been constructed. Some comparisons have been shown in figures to estimate the effects of the fractional order parameters on all the studied fields.  相似文献   

11.
In this paper a problem on transient heat conduction in the walls of a gas channel with a rectangular cross-section is solved. The temperature of the gas flow in the channel rises linearly while the temperature of the surrounding open air is constant.The differential equation and its auxiliary conditions are Laplace transformed, the subsidiary equations are solved by a method resembling the two-dimensional relaxation method for steady state heat conduction problems, and the resulting temperatures are obtained by numerical inversion.Numerical results are presented at the end of the paper.  相似文献   

12.
The general uncoupled dynamical problem of thermoelasticity for a half-space under the condition of a thermal impact with a finite rate of change in temperature on its boundary is solved by the method of principal (fundamental) functions within the framework of a generalized theory of heat conduction.An elastic steel half-space is analyzed as an illustration. The problem on thermal stresses originating in an elastic half-space due to thermal impact produced by a jump change in temperature on the boundary was first analyzed in [1]. Since the temperature change on the boundary occurs at a finite rate, it is generally impossible to realize the thermal impact considered in [1] physically. The dynamic effects in an elastic half-space under a thermal impact with finite rate of change in the temperature on the boundary have been studied in [2]. For high rates of change of the heat flux we obtain a generalized wave equation of heat conduction [3] taking into account the finite velocity of heat propagation. Hence, the solution of the ordinary parabolic heat conduction equation used in [1, 2] does not correspond to the true temperature field. The problems of [1, 2] have been examined in [4, 5], respectively, within the framework of a generalized theory of heat conduction.  相似文献   

13.
A finite integral transform (FIT)-based analytical solution to the dual phase lag (DPL) bio-heat transfer equation has been developed. One of the potential applications of this analytical approach is in the field of photo-thermal therapy, wherein the interest lies in determining the thermal response of laser-irradiated biological samples. In order to demonstrate the applicability of the generalized analytical solutions, three problems have been formulated: (1) time independent boundary conditions (constant surface temperature heating), (2) time dependent boundary conditions (medium subjected to sinusoidal surface heating), and (3) biological tissue phantoms subjected to short-pulse laser irradiation. In the context of the case study involving biological tissue phantoms, the FIT-based analytical solutions of Fourier, as well as non-Fourier, heat conduction equations have been coupled with a numerical solution of the transient form of the radiative transfer equation (RTE) to determine the resultant temperature distribution. Performance of the FIT-based approach has been assessed by comparing the results of the present study with those reported in the literature. A comparison of DPL-based analytical solutions with those obtained using the conventional Fourier and hyperbolic heat conduction models has been presented. The relative influence of relaxation times associated with the temperature gradients (τT) and heat flux (τq) on the resultant thermal profiles has also been discussed. To the best of the knowledge of the authors, the present study is the first successful attempt at developing complete FIT-based analytical solution(s) of non-Fourier heat conduction equation(s), which have subsequently been coupled with numerical solutions of the transient form of the RTE. The work finds its importance in a range of areas such as material processing, photo-thermal therapy, etc.  相似文献   

14.
就各向同性的无限弹性体,具有一个球形空腔时,从双温广义热弹性理论(2TT)角度,研究三相滞后热方程的热弹性相互作用问题.在三相滞后理论中,热传导方程是一个含时间四阶导数的、双曲型的偏微分方程.假设无限介质初始时静止,通过Laplace变换,将基本方程用向量矩阵微分方程的形式表示,然后通过状态空间法求解.将得到的通解应用于特殊问题:空腔边界上承受着热荷载(热冲击和坡型加热)和力学荷载.使用Fourier级数展开技术,实现Laplace变换的求逆.计算了铜类材料物理量的数值解.图形显示,两种模型:带能量耗散的双温Green-Naghdi理论(2TGNIII)和双温3相滞后模型(2T3相)明显不同.还对双温和坡型参数的影响进行了研究.  相似文献   

15.
Low Reynolds number fluid flow past a cylindrical body of arbitrary shape in an unbounded, two-dimensional domain is a singular perturbation problem involving an infinite logarithmic expansion in the small parameter ε, representing the Reynolds number. We apply a hybrid asymptotic–numerical method to compute the drag coefficient, C D and lift coefficient C L to within all logarithmic terms. The hybrid method solution involves a matrix M , depending only on the shape of the body, which we compute using a boundary integral method. We illustrate the hybrid method results on an elliptic object and on a more complicated profile.  相似文献   

16.
针对点阵夹层结构主动热防护问题,建立了夹层结构面板和芯体导热与冷却剂对流耦合的非稳态传热理论模型,利用有限体积法离散控制方程并在MATLAB中进行了迭代求解.模型首次考虑了面板与夹芯杆之间的收缩热阻,并利用分离变量法得到了收缩热阻的近似解析解.基于单胞模型和周期性边界条件,模拟得到了模型所需的表面对流传热系数h_(b)和h_(fin).最后,选取多单胞计算工况进行数值模拟和理论模型对比,并讨论了收缩热阻对模型预测精度的影响.结果表明:理论模型能够准确预测夹层结构及内部流体的温度变化,理论与仿真之间的最大误差不超过1%;随着外加热流密度不断增大,忽略收缩热阻使得计算结果造成的误差不断增大;与数值模拟相比,理论模型可显著地减少计算时间并节省计算资源,尤其适用于非均匀、非稳态复杂热载荷下点阵夹层结构的温度响应计算.  相似文献   

17.
In this paper a three-dimensional steady state model has been developed to study heat flow in dermal regions of tapered shape human limbs, which are elliptical in shape. The model incorporates the important biophysical parameters like blood mass flow rate, thermal conductivity and rate of metabolic heat generation. Appropriate boundary conditions have been framed using biophysical conditions. The finite element method has been employed using coaxial elliptical hexahedral elements to solve the problem. MATLAB 7.0 has been used to simulate the model and obtain numerical results.  相似文献   

18.
The laminar flow and heat transfer of an incompressible, third grade, electrically conducting fluid impinging normal to a plane in the presence of a uniform magnetic field is investigated. The heat transfer analysis has been carried out for two heating processes, namely, (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). By means of the similarity transformation, the governing non-linear partial differential equations are reduced to a system of non-linear ordinary differential equations and are solved by a second-order numerical technique. Effects of various non-Newtonian fluid parameters, magnetic parameter, Prandtl number on the velocity and temperature fields have been investigated in detail and shown graphically. It is found that the velocity gradient at the wall decreases as the third grade fluid parameter increases.  相似文献   

19.
This work is concerned with the influence of uniform suction or injection on flow and heat transfer analysis of a second order fluid. The resulting nonlinear problem for velocity is solved by means of homotopy analysis method (HAM). The comparison between the numerical solution of Hady and Gorla (Acta Mec 128 (1998), 201–208 and HAM solution is discussed with the help of numerical tables and graphs. Nonsimilar solutions to the stream function and temperature are developed. The influence of important parameters is seen on the velocity, temperature, skin friction coefficient, and temperature gradient. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1511–1524, 2011  相似文献   

20.
We consider a non-standard inverse heat conduction problem in a quarter plane which appears in some applied subjects. We want to know the surface heat flux in a body from a measured temperature history at a fixed location inside the body. This is an exponentially ill-posed problem in the sense that the solution (if it exists) does not depend continuously on the data. A Fourier regularization method together with order optimal logarithmic stability estimates is given. A numerical example shows that the theoretical results are valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号