首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research on Community Structure in Bus Transport Networks   总被引:1,自引:0,他引:1  
We abstract the bus transport networks (BTNs) to two kinds of complex networks with space L and space P methods respectively. Using improved community detecting algorithm (PKM agglomerative algorithm), we analyze the community property of two kinds of BTNs graphs. The results show that the BTNs graph described with space L method have obvious community property, but the other kind of BTNs graph described with space P method have not. The reason is that the BTNs graph described with space P method have the intense overlapping community property and general community division algorithms can not identify this kind of community structure. To overcome this problem, we propose a novel community structure called N-depth community and present a corresponding community detecting algorithm, which can detect overlapping community. Applying the novel community structure and detecting algorithm to a BTN evolution model described with space P, whose network property agrees well with real BTNs', we get obvious community property.  相似文献   

2.
On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs.  相似文献   

3.
Transport networks, such as railway networks and airport networks, are a kind of random network with complex topology. Recently, more and more scholars paid attention to various kinds of transport networks and try to explore their inherent characteristics. Here we study the exponential properties of a recently introduced Bus Transport Networks (BTNs) evolution model with random overlapping clique structure, which gives a possible explanation for the observed exponential distribution of the connectivities of some BTNs of three major cities in China. Applying mean-field theory, we analyze the BTNs model and prove that this model has the character of exponential distribution of the connectivities, and develop a method to predict the growth dynamics of the individual vertices, and use this to calculate analytically the connectivity distribution and the exponents. By comparing mean-field based theoretic results with the statistical data of real BTNs, we observe that, as a whole, both of their data show similar character of exponential distribution of the connectivities, and their exponents have same order of magnitude, which show the availability of the analytical result of this paper.  相似文献   

4.
小世界网络与无标度网络的社区结构研究   总被引:12,自引:0,他引:12       下载免费PDF全文
模块性(modularity)是度量网络社区结构(community structure)的主要参数.探讨了Watts和Strogatz的小世界网络(简称W-S模型)以及Barabàsi 等的B-A无标度网络(简称B-A模型)两类典型复杂网络模块性特点.结果显示,网络模块性受到网络连接稀疏的影响,W-S模型具有显著的社区结构,而B-A模型的社区结构特征不明显.因此,应用中应该分别讨论网络的小世界现象和无标度特性.社区结构不同于小世界现象和无标度特性,并可以利用模块性区别网络类型,因此网络复杂性指标应该包括 关键词: 模块性 社区结构 小世界网络 无标度网络  相似文献   

5.
Community structure has an important influence on the structural and dynamic characteristics of the complex systems.So it has attracted a large number of researchers.However,due to its complexity,the mechanism of action of the community structure is still not clear to this day.In this paper,some features of the community structure have been discussed.And a constraint model of the community has been deduced.This model is effective to identify the communities.And especially,it is effective to identify the overlapping nodes between the communities.Then a community detection algorithm,which has linear time complexity,is proposed based on this constraint model,a proposed node similarity model and the Modularity Q.Through some experiments on a series of real-world and synthetic networks,the high performances of the algorithm and the constraint model have been illustrated.  相似文献   

6.
A community in a complex network refers to a group of nodes that are densely connected internally but with only sparse connections to the outside. Overlapping community structures are ubiquitous in real-world networks, where each node belongs to at least one community. Therefore, overlapping community detection is an important topic in complex network research. This paper proposes an overlapping community detection algorithm based on membership degree propagation that is driven by both global and local information of the node community. In the method, we introduce a concept of membership degree, which not only stores the label information, but also the degrees of the node belonging to the labels. Then the conventional label propagation process could be extended to membership degree propagation, with the results mapped directly to the overlapping community division. Therefore, it obtains the partition result and overlapping node identification simultaneously and greatly reduces the computational time. The proposed algorithm was applied to a synthetic Lancichinetti–Fortunato–Radicchi (LFR) dataset and nine real-world datasets and compared with other up-to-date algorithms. The experimental results show that our proposed algorithm is effective and outperforms the comparison methods on most datasets. Our proposed method significantly improved the accuracy and speed of the overlapping node prediction. It can also substantially alleviate the computational complexity of community structure detection in general.  相似文献   

7.
复杂网络中社团结构发现的多分辨率密度模块度   总被引:2,自引:0,他引:2       下载免费PDF全文
张聪  沈惠璋  李峰  杨何群 《物理学报》2012,61(14):148902-148902
现实中的许多复杂网络呈现出明显的模块性或社团性.模块度是衡量社团结构划分优劣的效益函数, 它也通常被用作社团结构探测的目标函数,但最为广泛使用的Newman-Girvan模块度却存在着分辨率限制问题,多分辨率模块度也不能克服误合并社团和误分裂社团同时存在的缺陷. 本文在网络密度的基础上提出了多分辨率的密度模块度函数, 通过实验和分析证实了该函数能够使社团结构的误划分率显著降低, 而且能够体现出网络社团结构是一个有机整体,不是各个社团的简单相加.  相似文献   

8.
With the rapid development of computer technology, the research on complex networks has attracted more and more attention. At present, the research directions of cloud computing, big data, internet of vehicles, and distributed systems with very high attention are all based on complex networks. Community structure detection is a very important and meaningful research hotspot in complex networks. It is a difficult task to quickly and accurately divide the community structure and run it on large-scale networks. In this paper, we put forward a new community detection approach based on internode attraction, named IACD. This algorithm starts from the perspective of the important nodes of the complex network and refers to the gravitational relationship between two objects in physics to represent the forces between nodes in the network dataset, and then perform community detection. Through experiments on a large number of real-world datasets and synthetic networks, it is shown that the IACD algorithm can quickly and accurately divide the community structure, and it is superior to some classic algorithms and recently proposed algorithms.  相似文献   

9.
A ubiquitous phenomenon in networks is the presence of communities within which the network connections are dense and between which they are sparser.This paper proposes a max-flow algorithm in bipartite networks to detect communities in general networks.Firstly,we construct a bipartite network in accordance with a general network and derive a revised max-flow problem in order to uncover the community structure.Then we present a local heuristic algorithm to find the optimal solution of the revised max-flow problem.This method is applied to a variety of real-world and artificial complex networks,and the partition results confirm its effectiveness and accuracy.  相似文献   

10.
A ubiquitous phenomenon in networks is the presence of communities within which the network connections are dense and between which they are sparser. This paper proposes a max-flow algorithm in bipartite networks to detect communities in general networks. Firstly, we construct a bipartite network in accordance with a general network and derive a revised max-flow problem in order to uncover the community structure. Then we present a local heuristic algorithm to find the optimal solution of the revised max-flow problem. This method is applied to a variety of real-world and artificial complex networks, and the partition results confirm its effectiveness and accuracy.  相似文献   

11.
We consider the problem of modeling and estimating communities in directed networks. Models to this problem in the previous literature always assume that the sending clusters and the receiving clusters have non-overlapping property or overlapping property simultaneously. However, previous models cannot model the directed network in which nodes in sending clusters have overlapping property, while nodes in receiving clusters have non-overlapping property, especially for the case when the number of sending clusters is no larger than that of the receiving clusters. This kind of directed network exists in the real world for its randomness, and by the fact that we have little prior knowledge of the community structure for some real-world directed networks. To study the asymmetric structure for such directed networks, we propose a flexible and identifiable Overlapping and Non-overlapping model (ONM). We also provide one model as an extension of ONM to model the directed network, with a variation in node degree. Two spectral clustering algorithms are designed to fit the models. We establish a theoretical guarantee on the estimation consistency for the algorithms under the proposed models. A small scale computer-generated directed networks are designed and conducted to support our theoretical results. Four real-world directed networks are used to illustrate the algorithms, and the results reveal the existence of highly mixed nodes and the asymmetric structure for these networks.  相似文献   

12.
Abstract

The realization of a new transport backbone for the Telecom Italia network has multiple objectives: to increase transport capacity, network flexibility, and reliability through the adoption of evolved management and control planes, and to go beyond the present architecture, which is based on point-to-point systems. This article describes the present status of the network and the evolutionary trends.  相似文献   

13.
张梁  王景存  梅镖 《应用声学》2016,24(2):264-266
智能中控主机作为多媒体会议室和多媒体展厅等现代化办公场所运转的控制核心,其重要性不言而喻,目前市面上主要采用的是基于RS485总线的传统组网模式,导致系统的实时性较差、容错率较低、功能欠完善,同时成本高昂。针对这种情况,在不允许改动被控设备的工作方式的条件下,提出一种基于CAN总线网络,以嵌入式系统作为主控设备,以各功能驱动模块作为子设备的中控系统。通过CAN总线控制器的优先级仲裁机制,以及制定的带错误反馈的数据包通信协议,实现了对各种被控设备的实时精准控制。该中控主机系统硬件电路简单、功能模块方便扩展、成本低廉并且高效稳定;通过实验测试,所设计的智能中控主机性能良好,达到了规定的行业标准,具有广泛的应用前景。  相似文献   

14.
The semantic social network is a complex system composed of nodes, links, and documents. Traditional semantic social network community detection algorithms only analyze network data from a single view, and there is no effective representation of semantic features at diverse levels of granularity. This paper proposes a multi-view integration method for community detection in semantic social network. We develop a data feature matrix based on node similarity and extract semantic features from the views of word frequency, keyword, and topic, respectively. To maximize the mutual information of each view, we use the robustness of L21-norm and F-norm to construct an adaptive loss function. On this foundation, we construct an optimization expression to generate the unified graph matrix and output the community structure with multiple views. Experiments on real social networks and benchmark datasets reveal that in semantic information analysis, multi-view is considerably better than single-view, and the performance of multi-view community detection outperforms traditional methods and multi-view clustering algorithms.  相似文献   

15.
Link prediction based on bipartite networks can not only mine hidden relationships between different types of nodes, but also reveal the inherent law of network evolution. Existing bipartite network link prediction is mainly based on the global structure that cannot analyze the role of the local structure in link prediction. To tackle this problem, this paper proposes a deep link-prediction (DLP) method by leveraging the local structure of bipartite networks. The method first extracts the local structure between target nodes and observes structural information between nodes from a local perspective. Then, representation learning of the local structure is performed on the basis of the graph neural network to extract latent features between target nodes. Lastly, a deep-link prediction model is trained on the basis of latent features between target nodes to achieve link prediction. Experimental results on five datasets showed that DLP achieved significant improvement over existing state-of-the-art link prediction methods. In addition, this paper analyzes the relationship between local structure and link prediction, confirming the effectiveness of a local structure in link prediction.  相似文献   

16.
In a network described by a graph, only topological structure information is considered to determine how the nodes are connected by edges. Non-topological information denotes that which cannot be determined directly from topological information. This paper shows, by a simple example where scientists in three research groups and one external group form four communities, that in some real world networks non-topological information (in this example, the research group affiliation) dominates community division. If the information has some influence on the network topological structure, the question arises as to how to find a suitable algorithm to identify the communities based only on the network topology. We show that weighted Newman algorithm may be the best choice for this example. We believe that this idea is general for real-world complex networks.  相似文献   

17.
Within linear response theory, a general approach to the thermoelectric transport coefficients for fully ionized hydrogen‐type plasma has been given. Different approximations for the collision integral are considered. Particular attention is given to dynamical screening and the ion‐ion structure factor. Results are presented for the electrical conductivity, the thermal conductivity, and the thermopower in the non‐degenerate limit (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In order to describe the self-organization of communities in the evolution of weighted networks, we propose a new evolving model for weighted community-structured networks with the preferential mechanisms functioned in different levels according to community sizes and node strengths, respectively. Theoretical analyses and numerical simulations show that our model captures power-law distributions of community sizes, node strengths, and link weights, with tunable exponents of v ≥ 1, γ 〉 2, and α 〉 2, respectively, sharing large clustering coefficients and scaling clustering spectra, and covering the range from disassortative networks to assortative networks. Finally, we apply our new model to the scientific co-authorship networks with both their weighted and unweighted datasets to verify its effectiveness.  相似文献   

19.
Community detection is of great significance in understanding the structure of the network. Label propagation algorithm (LPA) is a classical and effective method, but it has the problems of randomness and instability. An improved label propagation algorithm named LPA-MNI is proposed in this study by combining the modularity function and node importance with the original LPA. LPA-MNI first identify the initial communities according to the value of modularity. Subsequently, the label propagation is used to cluster the remaining nodes that have not been assigned to initial communities. Meanwhile, node importance is used to improve the node order of label updating and the mechanism of label selecting when multiple labels are contained by the maximum number of nodes. Extensive experiments are performed on twelve real-world networks and eight groups of synthetic networks, and the results show that LPA-MNI has better accuracy, higher modularity, and more reasonable community numbers when compared with other six algorithms. In addition, LPA-MNI is shown to be more robust than the traditional LPA algorithm.  相似文献   

20.
Constructing the structure of protein signaling networks by Bayesian network technology is a key issue in the field of bioinformatics. The primitive structure learning algorithms of the Bayesian network take no account of the causal relationships between variables, which is unfortunately important in the application of protein signaling networks. In addition, as a combinatorial optimization problem with a large searching space, the computational complexities of the structure learning algorithms are unsurprisingly high. Therefore, in this paper, the causal directions between any two variables are calculated first and stored in a graph matrix as one of the constraints of structure learning. A continuous optimization problem is constructed next by using the fitting losses of the corresponding structure equations as the target, and the directed acyclic prior is used as another constraint at the same time. Finally, a pruning procedure is developed to keep the result of the continuous optimization problem sparse. Experiments show that the proposed method improves the structure of the Bayesian network compared with the existing methods on both the artificial data and the real data, meanwhile, the computational burdens are also reduced significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号