首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We report CH/π hydrogen‐bond‐driven self‐assembly in π‐conjugated skeletons based on oligophenylenevinylenes (OPVs) and trace the origin of interactions at the molecular level by using single‐crystal structures. OPVs were designed with appropriate pendants in the aromatic core and varied by hydrocarbon or fluorocarbon tails along the molecular axis. The roles of aromatic π‐stack, van der Waals forces, fluorophobic effect and CH/π interactions were investigated on the theromotropic liquid crystallinity of OPV molecules. Single‐crystal structures of hydrocarbon OPVs provided direct evidence for the existence of CH/π interactions between the π‐ring (H‐bond acceptor) and alkyl C? H (H‐bond donor). The four important crystallographic parameters, dc?x=3.79 Å, θ=21.49°, φ=150.25° and dHp?x=0.73 Å, matched in accordance with typical CH/π interactions. The CH/π interactions facilitate the close‐packing of mesogens in xy planes, which were further protruded along the c axis producing a lamellar structure. In the absence of CH/π interactions, van der Waals interactions drove the assembly towards a Schlieren nematic texture. Fluorocarbon OPVs exhibited smectic liquid‐crystalline textures that further underwent Smectic A (SmA) to Smectic C (SmC) phase transitions with shrinkage up to 11 %. The orientation and translational ordering of mesogens in the liquid‐crystalline (LC) phases induced H‐ and J‐type molecular arrangements in fluorocarbon and hydrocarbon OPVs, respectively. Upon photoexcitation, the H‐ and J‐type molecular arrangements were found to emit a blue or yellowish/green colour. Time‐resolved fluorescence decay measurements confirmed longer lifetimes for H‐type smectic OPVs relative to that of loosely packed one‐dimensional nematic hydrocarbon‐tailed OPVs.  相似文献   

3.
4.
Dewar proposed the σ‐aromaticity concept to explain the seemingly anomalous energetic and magnetic behavior of cyclopropane in 1979. While a detailed, but indirect energetic evaluation in 1986 raised doubts—“There is no need to involve ‘σ‐aromaticity’,”—other analyses, also indirect, resulted in wide‐ranging estimates of the σ‐aromatic stabilization energy. Moreover, the aromatic character of “in‐plane”, “double”, and cyclically delocalized σ‐electron systems now seems well established in many types of molecules. Nevertheless, the most recent analysis of the magnetic properties of cyclopropane (S. Pelloni, P. Lazzeretti, R. Zanasi, J. Phys. Chem. A 2007 , 111, 8163–8169) challenged the existence of an induced σ‐ring current, and provided alternative explanations for the abnormal magnetic behavior. Likewise, the present study, which evaluates the σ‐aromatic stabilization of cyclopropane directly for the first time, fails to find evidence for a significant energetic effect. According to ab initio valence bond (VB) computations at the VBSCF/cc‐PVTZ level, the σ‐aromatic stabilization energy of cyclopropane is, at most, 3.5 kcal mol?1 relative to propane, and is close to zero when n‐butane is used as reference. Trisilacyclopropane also has very little σ‐aromatic stabilization, compared to Si3H8 (6.3 kcal mol?1) and Si4H10 (4.2 kcal mol?1). Alternative interpretations of the energetic behavior of cyclopropane (and of cyclobutane, as well as their silicon counterparts) are supported.  相似文献   

5.
6.
This theoretical study suggests that CH???π stacking interactions between monomeric units can be used to design novel single‐chain magnets (SCMs), as the sign of coupling is predictable and such chains inherently yield negative axial anisotropy, a condition often difficult to achieve in conventional SCMs.  相似文献   

7.
8.
Mixed cation (Li+, Na+ and K+) and anion (F?, Cl?, Br?) complexes of the aromatic π‐surfaces (top and bottom) are studied by using dispersion‐corrected density functional theory. The selectivity of the aromatic surface to interact with a cation or an anion can be tuned and even reversed by the electron‐donating/electron‐accepting nature of the side groups. The presence of a methyl group in the ? OCH3, ? SCH3, ? OC2H5 in the side groups of the aromatic ring leads to further cooperative stabilization of the otherwise unstable/weakly stable anion???π complexes by bending of the side groups towards the anion to facilitate C? H???anion interactions. The cooperativity among the interactions is found to be as large as 100 kcal mol?1 quantified by dissection of the three individual forces from the total interaction energy. The crystal structures of the fluoride binding tripodal and hexapodal ligands provide experimental evidence for such cooperative interactions.  相似文献   

9.
A new and efficient synthesis of 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives by a one‐pot three‐component reaction between primary amine, dialkyl acetylenedicarboxylate, and itaconic anhydride (=3,4‐dihydro‐3‐methylidenefuran‐2,5‐dione) is reported. The reaction was performed without catalyst and under solvent‐free conditions with excellent yields. Notably, the ready availability of the starting materials, and the high level of practicability of the reaction and workup make this approach an attractive complementary method to access to unknown 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of domino Michael addition? cyclization reaction is proposed (Scheme 2).  相似文献   

10.
11.
12.
Recently described and fully characterized trinuclear rhodium‐hydride complexes [{Rh(PP*)H}32‐H)33‐H)][anion]2 have been investigated with respect to their formation and role under the conditions of asymmetric hydrogenation. Catalyst–substrate complexes with mac (methyl (Z)‐ N‐acetylaminocinnamate) ([Rh(tBu‐BisP*)(mac)]BF4, [Rh(Tangphos)(mac)]BF4, [Rh(Me‐BPE)(mac)]BF4, [Rh(DCPE)(mac)]BF4, [Rh(DCPB)(mac)]BF4), as well as rhodium‐hydride species, both mono‐([Rh(Tangphos)‐ H2(MeOH)2]BF4, [Rh(Me‐BPE)H2(MeOH)2]BF4), and dinuclear ([{Rh(DCPE)H}22‐H)3]BF4, [{Rh(DCPB)H}22‐H)3]BF4), are described. A plausible reaction sequence for the formation of the trinuclear rhodium‐hydride complexes is discussed. Evidence is provided that the presence of multinuclear rhodium‐hydride complexes should be taken into account when discussing the mechanism of rhodium‐promoted asymmetric hydrogenation.  相似文献   

13.
Research on structure–property relationships in distyrylarylene derivatives is far behind their wide applications in optoelectronic devices due to the absence of crystal structure information. Herein, the single crystals of 4,4′‐bis(2‐thienylvinyl)biphenyl ( 1 ) and 4,4′‐bis(2‐thieno[3,2‐b]thienylvinyl)biphenyl ( 2 ) were successfully grown by the vapor transport method. Both molecules adopt the typical herringbone packing motif. However, the intermolecular C? H???π interaction in compound 2 is much stronger than that in compound 1 . The correlations of interchain interaction with film morphology, optical and electronic properties were studied. Compound 2 formed higher crystalline films with (001) and (111) orientations. The organic field‐effect transistor properties of both materials were investigated. Compound 2 showed better performance with a hole mobility higher than 0.01 cm2 V?1 s?1 and an on/off current ratio over 106. These results reveal that the intensity of C? H???π interactions can exert dramatic influences on the optical and electronic properties of distyrylarylene‐based materials.  相似文献   

14.
Rh2(OAc)4‐Catalyzed decomposition of diazo esters in the presence of perfluoroalkyl‐ or perfluoroaryl‐substituted silyl enol ethers smoothly provided the corresponding alkyl 2‐siloxycyclopropanecarboxylates in very good yields. The generated donor? acceptor cyclopropanes are equivalents of γ‐oxo esters, which we demonstrated by their one‐pot transformations to yield fluorine‐containing heterocycles. A reductive procedure selectively afforded perfluoroalkyl‐substituted γ‐hydroxy esters or γ‐lactones. The treatment of the donor? acceptor cyclopropanes with hydrazine or phenylhydrazine afforded a series of perfluoroalkyl‐ and perfluoroaryl‐substituted 4,5‐dihydropyridazin‐3(2H)‐ones.  相似文献   

15.
The 1H NMR chemical shifts of the C(α)? H protons of arylmethyl triphenylphosphonium ions in CD2Cl2 solution strongly depend on the counteranions X?. The values for the benzhydryl derivatives Ph2CH? PPh3+ X?, for example, range from δH=8.25 (X?=Cl?) over 6.23 (X?=BF4?) to 5.72 ppm (X?=BPh4?). Similar, albeit weaker, counterion‐induced shifts are observed for the ortho‐protons of all aryl groups. Concentration‐dependent NMR studies show that the large shifts result from the deshielding of the protons by the anions, which decreases in the order Cl? > Br? ? BF4? > SbF6?. For the less bulky derivatives PhCH2? PPh3+ X?, we also find C? H???Ph interactions between C(α)? H and a phenyl group of the BPh4? anion, which result in upfield NMR chemical shifts of the C(α)? H protons. These interactions could also be observed in crystals of (p‐CF3‐C6H4)CH2? PPh3+ BPh4?. However, the dominant effects causing the counterion‐induced shifts in the NMR spectra are the C? H???X? hydrogen bonds between the phosphonium ion and anions, in particular Cl? or Br?. This observation contradicts earlier interpretations which assigned these shifts predominantly to the ring current of the BPh4? anions. The concentration dependence of the 1H NMR chemical shifts allowed us to determine the dissociation constants of the phosphonium salts in CD2Cl2 solution. The cation–anion interactions increase with the acidity of the C(α)? H protons and the basicity of the anion. The existence of C? H???X? hydrogen bonds between the cations and anions is confirmed by quantum chemical calculations of the ion pair structures, as well as by X‐ray analyses of the crystals. The IR spectra of the Cl? and Br? salts in CD2Cl2 solution show strong red‐shifts of the C? H stretch bands. The C? H stretch bands of the tetrafluoroborate salt PhCH2? PPh3+ BF4? in CD2Cl2, however, show a blue‐shift compared to the corresponding BPh4? salt.  相似文献   

16.
The single‐crystal X‐ray diffraction analysis of a β,γ‐hybrid model peptide Boc‐β‐Ala‐γ‐Abu‐NH2 revealed the existence of four crystallographically independent molecules ( A , B , C and D conformers) in the asymmetric unit. The analysis revealed that unusual β‐turn‐like folded structures predominate, wherein the conformational space of non‐proteinogenic β‐Ala and γ‐Abu residues are restricted to gauchegaucheskew and skewgauchetransskew orientations, respectively. Interestingly, the U‐shaped conformers are seemingly stabilised by an effective unconventional C? H ??? O intramolecular hydrogen bond, encompassing a non‐covalent 14‐membered ring‐motif. Taking into account the signs of torsion angles, these conformers could be grouped into two distinct categories, A / B and C / D , establishing the incidence of non‐superimposable stereogeometrical features across a non‐chiral one‐component peptide model system, that is, “mirror‐image‐like” relationships. The natural occurrence of β‐Ala and γ‐Abu entities in various pharmacologically important molecules, coupled with their biocompatibilities, highlight how the non‐functionalised β,γ‐hybrid segment may offer unique advantages for introducing and/or manipulating a wide spectrum of biologically relevant hydrogen bonded secondary structural mimics in short synthetic peptides.  相似文献   

17.
β‐ or α,β‐Substituted vinylpyridines react with 3,3‐dimethylbut‐1‐ene in the presence of Wilkinson catalyst [RhCl(PPh3)3] to give the corresponding alkylated products along with unusually isomerized products. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:346–350, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10045  相似文献   

18.
The energies of the kinetically inert, electronically saturated Lukehart-type metalla-beta-diketone [Re{(COMe)2H}(CO)4] (9 a) and of the kinetically labile, electronically unsaturated platina-beta-diketones [Pt{(COMe)2H}Cl2]- (10 a), [Pt2{(COMe)2H}2(micro-Cl)2] (11 a), and [Pt{(COMe)2H}(bpy)]+ (12 a) have been calculated by DFT at the B3LYP/6-311++G(d,p) level using effective core potentials with consideration of relativistic effects for the transition metals. Analogously, energies of the requisite open (non-hydrogen-bonded) equilibrium conformers (9 b, 10 c, 11 b, 12 b) and energies which were obtained from the hydrogen-bonded conformers by rigid rotation of the OH group around the C--O bond by 180 degrees followed by relaxation of all bond lengths and angles (9 c, 10 d, 11 c, 12 d) have been calculated. These energies were found to be higher by 14.7/27.2 (9 b/9 c), 20.7/27.2 (10 c/10 d), 19.2/25.7 (11 b/11 c), and 9.4/19.6 kcal mol(-1) (12 b/12 d) than those of the intramolecularly O--HO hydrogen-bonded metalla-beta-diketones 9 a, 10 a, 11 a, and 12 a, respectively. In acetylacetone (Hacac), the generic organic analogue of metalla-beta-diketones, the energies of the most stable non-hydrogen-bonded enol isomer (6 b) and of the conformer derived from the H-bonded form by rigid rotation of the OH group by 180 degrees followed by subsequent relaxation of all bond lengths and angles (6 k) were found to be 10.9/16.1 kcal mol(-1) (6 b/6 k) higher compared to the intramolecularly O--HO bonded isomer 6 a. Thus, the hydrogen bonds in metalla-beta- diketones must be regarded as strong and were found to be up to twice as strong as that in acetylacetone. A linear relationship was found between the hydrogen-bond energies based on the rigidly rotated structures and the OO separation in the hydrogen-bonded structures. Furthermore, these energies were also found to be correlated with the electron densities at the OH bond critical points (rhobcp) in the O--HO bonds of metalla-beta-diketones 9 a, 10 a, 11 a, and 12 a (calculated using the AIM theory). The comparison of the energies of the doubly intermolecularly hydrogen-bonded dinuclear platina-beta-diketone [{Pt{(COMe)2H}(bpy)}2]2+ (14) with that of the mononuclear intramolecularly hydrogen-bonded cation [Pt{(COMe)2H}(bpy)]+ (12 a) showed that the intermolecular hydrogen bonds in 14 are weaker than the intramolecular hydrogen bond in 12.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号