首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mike Richter 《PAMM》2005,5(1):359-360
This paper concerns with the development of the macroscopic material behaviour of textile reinforced concrete (TRC) using an analytical approach. Therefore the heterogeneous structure of TRC is modelled on the mesoscopic level. The overall material behaviour on the macroscopic level is obtained by means of the homogenisation technique. The analytical approach is based on the micro mechanical solution for a single inclusion according to Eshelby . In extension of this solution for multidirectional reinforced concrete an effective field approximation is used. This approach considers the interactions between the different orientated rovings and the micro cracks in an average sense. For the mechanical modelling of the bond behaviour between roving and matrix after initiating of the macro cracking a slip based bond model with a multiple linear shear stress-slip relation is used. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Aussama Azzam  Mike Richter 《PAMM》2011,11(1):139-140
This paper concerns with the finite element simulation of textile reinforced concrete (TRC) behavior under tension loading by using discrete cracking concept and fracture mechanics approaches. 3D Finite-Element models are formulated on the meso-scale by simulating all the heterogeneous structural components, the matrix, the fibers, and the fracture mechanisms in both fiber-matrix interface, and the discrete cracks of the matrix. The presented numerical simulation in this study allows for better understanding of the stress distribution and the interaction between all damage mechanisms and the corresponding energy dissipations. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
D. Branke  J. Brummund  G. Haasemann  V. Ulbricht 《PAMM》2008,8(1):10537-10538
The efficient simulation of textile reinforced composites requires reliable material parameters describing the macroscopic material behavior. Due to the micro–structure, decoupled tensile and bending stiffnesses are observed in experimental investigations. This motivates the use of higher order continuum theories. For numerical simulation of this material behavior, the formulation and application of a volume element based on the Cosserat continuum theory is presented. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this contribution, the isogeometric analysis is used to compute the effective material properties of textile reinforced composites. The isogeometric analysis based on non-uniform rational B-splines (NURBS) provides an efficient approach for numerical modeling because there is no need for a mesh generation. There are further advantages such as the availability of a geometry representation based on NURBS in computer-aided design software and the possibility to apply different refinement methods which do not change the geometry of the numerical model. These properties motivate the combination of the isogeometric analysis with the homogenization method. Therefor, the unit cell model representing the inner architecture of a textile reinforced composite is defined using NURBS. In order to compute the effective mechanical properties of the heterogeneous material, the homogenization method with periodic boundary conditions is applied. Finally, two examples demonstrate the advantages of this approach. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Many location problems may be separated into a series of interrelated macro, meso and micro decision-making states. The macro scale decision determines the type, capacity and number of facilities, the meso scale decision determines the location and allocation of facilities and the micro scale decision determines such considerations as routing and scheduling of service vehicles. This paper concerns the first two levels of decision-making.The present paper demonstrates the use of two models: (i) an analytical model that uses continuum approximations and methods of calculus to determine the number of facilities, the capacity and the approximate location of each that minimizes the sum of the transportation and facility costs for a slowly varying demand rate, and (ii) a traditional location-allocation model that determines more exactly the resulting locations and allocations. These two approaches have specific requirements in terms of data input, cost of data collection and cost of solution and, consequently, yield unique insights and benefits for practising planners. The strengths and weaknesses of the two models are complementary. This thesis is developed with an analysis of the Calgary, Alberta refuse collection and disposal system.  相似文献   

7.
The increasing importance of constructive lightweight in modern engineering science involves the use of advanced materials like textile reinforced composites. In order to reduce development costs, efficient numerical simulations are needed to model the macroscopic behavior of the final product. Focussing on long term phenomena, which are important when parts made of composites with rate-dependent material behavior are assembled by bolted or screwed joints, a two-step homogenization procedure is used to obtain an effective homogeneous equivalent material at the macroscopic scale. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Wind turbines extract energy from the approaching flow field resulting in reduced wind speeds, increased turbulence and a wake downstream of the wind turbine. The wake has a multitude of negative effects on downstream wind turbines. This includes reduced efficiency and increased unsteadiness resulting in vibrations and potentially in material fatigue. Moreover, the maintenance can increase compared to non-interfering wind turbines. The simulation of these effects is challenging. Computational fluid dynamics (CFD) simulations of these large and complex geometries requires exceedingly large computational resources. With present Reynolds Averaged Navier-Stokes (RANS) or Large Eddy Simulation (LES) based CFD methods it is virtually impossible to perform such simulations of the interaction between individual wind turbines in a complete wind turbine farm. Coupling to the mesoscale accounting for local weather situations becomes yet more challenging. This is due to the wide range of length and time scales that have to be considered for these simulations and therefore the tremendous computational power needed to perform such simulations. To investigate these effects we propose to combine ideas from existing methods, the Coarse-Grid-CFD (CGCFD) ( [1]) developed at the KIT and the meso-/ micro scale method developed at the University of Thessaloniki ( [2]). Goal of the proposed methodology is to provide a numerical method that allows to implement a wind farm in a meso-scale weather simulation which includes two-way coupling. Thus both the micro and the meso scale wind and energy production of wind farms can be addressed. This proposed multi scale coupling strategy can also be applied in two hierarchies reducing the numerical effort of the global approach yet more. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This paper presents experimental and numerical methods to perform simulations of the mechanical behavior of textile reinforced composites and structures. The first aspect considered refers to the meso-to-macro transition in the framework of the finite element (FE) method. Regarding an effective modelling strategy the Binary Model is used to represent the discretized complex architecture of the composite. To simulate the local response and to compute the macroscopic stress and stiffness undergoing small strain a user routine is developed. The results are transfered to the macroscopic model during the solution process. The second aspect concerns the configuration of the fiber orientation and textile shear deformation in complex structural components. To take these deformations which affect the macroscopic material properties into account they are regarded in a macroscopic FE model. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Fabric or continuous fiber reinforced rubber components (e.g. tires, air springs, industrial hoses, conveyor belts or membranes) are underlying high deformations in application and show a complex, nonlinear material behavior. A particular challenge depicts the simulation of these composites. In this contribution we show the identification of the stress and strain distributions by using an uncoupled multiscale modeling method, see [1]. Within this method, two representation levels are described: One, the meso level, where all constituents of the composite are shown in a discrete manner by a representative volume element (RVE) and secondly, the macro level, where the structural behavior of the component is defined by a smeared anisotropic hyperelastic constitutive law. Uncoupled means that the RVE does not drive the macroscopic material behavior directly as in a coupled approach, where a RVE boundary value problem has to be solved at every integration point of the macro level. Thus an uncoupled approach leads to a tremendous reduction in numerical effort because the boundary value problem of a RVE just has to be solved at a point of interest, see [1]. However, the uncoupled scale transition has to fulfill the HILL–MANDEL condition of energetic equivalence of both scales. We show the calibration of material parameters for a given constitutive model for fiber reinforced rubber by fitting experimental data on the macro level. Additionally, we demonstrate the determination of effective properties of the yarns. Finally, we compare the energies of both scales in terms of compliance with the HILL–MANDEL condition by using the example of a biaxial loaded sample and discuss the consequences for the mesoscopic level. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Concurrent multiscale method is a spatial and temporal combination of two different scale models for describing the micro/meso and macro mixed behaviors observed in strain localization, failure and phase transformation processes, etc. Most of the existing coupling schemes use the displacement compatibility conditions to glue different scale models, which leads to displacement continuity and stress discontinuity for the obtained multiscale model. To overcome stress discontinuity, this paper presented a multiscale method based on the generalized bridging domain method for coupling the discrete element (DE) and finite element (FE) models. This coupling scheme adopted displacement and stress mixed compatibility conditions. Displacements that were interpolated from FE nodes were prescribed on the artificial boundary of DE model, while stresses at numerical integration points that were extracted from DE contact forces were applied on the material transition zone of FE model (the coupling domain and the artificial boundary of FE model). In addition, this paper proposed an explicit multiple time-steps integration algorithm and adopted Cundall nonviscous damping for quasi-static problems. DE and FE parameters were calibrated by DE simulations of a biaxial compression test and a deposition process. Numerical examples for a 2D cone penetration test (CPT) show that the proposed multiscale method captures both mesoscopic and macroscopic behaviors such as sand soil particle rearrangement, stress concentration near the cone tip, shear dilation, penetration resistance vibration and particle rotation, etc, during the cone penetration process. The proposed multiscale method is versatile for maintaining stress continuity in coupling different scale models.  相似文献   

12.
Multiscale methods are frequently used in the design process of textile reinforced composites. In addition to the models for the local material structure it is necessary to formulate appropriate material models for the constituents. While experiments have shown that the reinforcing fibers can be assumed as linear elastic, the material behavior of the polymer matrix shows certain nonlinearities. These effects are mainly due to strain rate dependent material behavior. Fractional order models have been found to be appropriate to model this behavior. Based on experimental observations of Polypropylene a one-dimensional nonlinear fractional viscoelastic material model has been formulated. Its parameters can be determined from uniaxial, monotonic tensile tests at different strain rates, relaxation experiments and deformation controlled processes with intermediate holding times at different load levels. The presence of a process dependent function for the viscosity leads to constitutive equations which form nonlinear fractional differential equations. Since no analytical solution can be derived for these equations, a numerical handling has been developed. After all, the stress-strain curves obtained from a numerical analysis are compared to experimental results. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Modern composite materials, e.g., carbon fibre reinforced plastics (CFRP), exhibit a complex micro structure due to their fabrication process. The latter, being usually omitted in mechanical models through the homogenization of elastic properties, has a strong influence on the propagation of ultrasonic guided waves [1, 2]. Though it is possible to model the wave phenomena deterministically, taking into account a realistic distribution of fibres and polymer matrix, it is desirable to develop an improved model for the finite element analysis (FEM), which consider the stochastic properties in a more general way. In the current work, an approach for the simulation of waves in a isotropic beam with random material properties is presented. For the numerical computations with the FEM the Young's modulus was discretized by the Karhunen-Loève Expansion (KLE). Numerical investigations on the excited and propagating guided waves are presented. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Romana Piat  Eckart Schnack 《PAMM》2005,5(1):357-358
Carbon/carbon materials produced by chemical vapour infiltration consist of carbon fibers embedded in an anisotropic matrix of pyrocarbon. In this study we propose: 1) an approach for hierarchical homogenization of material parameters; 2) an approach for prediction of the stress concentrations in this material. The model estimates material properties on two scales: nano and micro scale. The microstructural morphology of CFC-material on the nano scale can be represented as distribution of mono crystals of pyrographite. For modeling the response at this scale we utilize the Eshelbi's theory for continuously distributed inclusions. The orientations distribution functions of inclusions (mono crystals) are used for calculation of the homogenized elasticity tensor of pyrographite. The numerical calculations of the stress fields in the samples characterized by different types of pyrocarbon coatings provides us the information about the (failure) regions with maximal (critical) values of stress. The obtained results demonstrate a good coincidence with experimentally identified failure regions. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In the present study, new constitutive models for high strength steel fibre reinforced concrete (HSSFRC) have been formulated by means of a regression analysis of many experimental data (from literature) by using SPSS-statistical program. This proposed constitutive models have been employed for formulating the material finite element models to study the behaviour of HSSFRC corbels.  相似文献   

16.
含孔隙混凝土二维细观建模方法研究   总被引:2,自引:2,他引:0  
根据混凝土的细观组成和结构特点,对传统二维建模方法加以继承与改进,提出了一种高效的分步入侵判定算法.将孔隙直观地反映在模型中,建立了不同的含孔隙混凝土细观模型.对含圆形、椭圆形、多边形骨料与圆形、椭圆形孔隙的混凝土标准试件分别进行了建模研究,结果表明本文的算法具有较强适用性.同时,通过对不同面积率与多种形状骨料/孔隙混凝土的大量建模进一步验证了该算法的效率.模拟了混凝土试件在单轴压缩下的准静态力学性能,分析了混凝土内部孔隙对其裂纹扩展的主要路径、破坏模式以及宏观力学性能的显著影响.  相似文献   

17.
In this contribution an energetic model for multi-phase materials is developed describing the influence of microstructure on different length scales as well as the evolution of phase changes. Restrictions on the energy functional are discussed. In such a non-convex framework, interfacial contributions serve for relaxing the total energy. Such models can be applied to describe the macroscopic material properties of carbon fibre reinforced carbon where phase transitions between regions of different texture of the carbon matrix are observed on nanoscale as well as columnar microstructures on microscale [2]. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This paper presents a new efficient modeling strategy based on the combination of Binary Model and X–FEM. It is applied to represent the inner architecture of textile reinforced composites where the fabric is characterized by a complex geometry. Homogenization methods are used to compute the effective elastic material properties. Thereby, the discrete formulation of periodic boundary conditions is adapted. Finally, the results in terms of effective material properties reveal a good agreement with parameters obtained by experimental tests. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this study, based on Reddy cylindrical double-shell theory, the free vibration and stability analyses of double-bonded micro composite sandwich cylindrical shells reinforced by carbon nanotubes conveying fluid flow under magneto-thermo-mechanical loadings using modified couple stress theory are investigated. It is assumed that the cylindrical shells with foam core rested in an orthotropic elastic medium and the face sheets are made of composites with temperature-dependent material properties. Also, the Lorentz functions are applied to simulation of magnetic field in the thickness direction of each face sheets. Then, the governing equations of motions are obtained using Hamilton's principle. Moreover, the generalized differential quadrature method is used to discretize the equations of motions and solve them. There are a good agreement between the obtained results from this method and the previous studies. Numerical results are presented to predict the effects of size-dependent length scale parameter, third order shear deformation theory, magnetic intensity, length-to-radius and thickness ratios, Knudsen number, orthotropic foundation, temperature changes and carbon nanotubes volume fraction on the natural frequencies and critical flow velocity of cylindrical shells. Also, it is demonstrated that the magnetic intensity, temperature changes and carbon nanotubes volume fraction have important effects on the behavior of micro composite sandwich cylindrical shells. So that, increasing the magnetic intensity, volume fraction and Winkler spring constant lead to increase the dimensionless natural frequency and stability of micro shells, while this parameter reduce by increasing the temperature changes. It is noted that sandwich structures conveying fluid flow are used as sensors and actuators in smart devices and aerospace industries. Moreover, carotid arteries play an important role to high blood rate control that they have a similar structure with flow conveying cylindrical shells. In fact, the present study can be provided a valuable background for more research and further experimental investigation.  相似文献   

20.
A numerical procedure is developed to determine effective material properties of unidirectional fiber reinforced composites with rhombic fiber arrangements. With the assumption of a periodic micro structure a representative volume element (RVE) is considered, where the phases have isotropic or transversely isotropic material characterizations. The interface between the phases is treated as perfect. The procedure handles the primary non-rectangular periodicity with homogenization techniques based on finite element models. Due to appropriate boundary conditions applied to the RVE elastic effective coefficients are derived. Six different boundary condition states are required to get all coefficients of the stiffness tensor. Results are listed and compared with other publications and good agreements are shown. Furthermore new results are presented, which exhibit the orthotropic behavior of such composites caused by the rhombic fiber arrangement. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号