首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko Dubrovsky equations, respectively.  相似文献   

2.
In this paper, a detailed Lie symmetry analysis of the(2+1)-dimensional coupled nonlinear extension of the reaction-diffusion equation is presented. The general finite transformation group is derived via a simple direct method,which is equivalent to Lie point symmetry group actually. Similarity reduction and some exact solutions of the original equation are obtained based on the optimal system of one-dimensional subalgebras. In addition, conservation laws are constructed by employing the new conservation theorem.  相似文献   

3.
In this paper, a detailed Lie symmetry analysis of the (2+1)-dimensional coupled nonlinear extension of the reaction-diffusion equation is presented. The general finite transformation group is derived via a simple direct method, which is equivalent to Lie point symmetry group actually. Similarity reduction and some exact solutions of the original equation are obtained based on the optimal system of one-dimensional subalgebras. In addition, conservation laws are constructed by employing the new conservation theorem.  相似文献   

4.
In this paper, based on new auxiliary nonlinear ordinary differential equation with a sixth-degree nonlinear term, we study the (2 1)-dimensional Davey-Stewartson equation and new types of travelling wave solutions are obtained, which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions, and singular solutions. The method used here can be also extended to many other nonlinear partial differential equations.  相似文献   

5.
In this paper, based on new auxiliary nonlinear ordinary differential equation with a sixtb-aegree nonnneal term, we study the (2+l )-dimensional Davey-Stewartson equation and new types of travelling wave solutions are obtained, which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions, and singular solutions. The method used here can be also extended to many other nonlinear partial differential equations.  相似文献   

6.
The Lax–Kadomtsev–Petviashvili equation is derived from the Lax fifth order equation, which is an important mathematical model in fluid physics and quantum field theory. Symmetry reductions of the Lax–Kadomtsev–Petviashvili equation are studied by the means of the Clarkson–Kruskal direct method and the corresponding reduction equations are solved directly with arbitrary constants and functions.  相似文献   

7.
ZHI  Hong-Yan 《理论物理通讯》2009,51(5):777-780
Based on the symbolic computational system Maple, the similarity reductions of a Lax pair for the (2+1 )-dimensional differential Sawada Kotera (SK) equation by the classical Lie point group method, are presented. We obtain several interesting reductions. Comparing the reduced Lax pair's compatibility with the reduced SK equation under the same symmetry group, we find that the reduced Lax pairs do not always lead to the reduced SK equation. In general, the reduced equations are the subsets of the compatibility conditions of the reduced Lax pair.  相似文献   

8.
By means of the classical symmetry method, we investigate two types of the (2+1)-dimensional nonlinear Klein-Gorden equation. For the wave equation, we give out its symmetry group analysis in detail. For the second type of the (2+1)-dimensional nonlinear Klein-Gorden equation, an optimal system of its one-dimensional subalgebras is constructed and some corresponding two-dimensional symmetry reductions are obtained.  相似文献   

9.
The (2 1)-dimensional Boussinesq equation and (3 1)-dimensional KP equation are studied by using the extended Jacobi elliptic-function method. The exact periodic-wave solutions for the two equations are obtained.  相似文献   

10.
The exact solutions of the generalized (2+1)-dimensional nonlinearZakharov-Kuznetsov (Z-K) equation are explored by the method of the improved generalized auxiliary differential equation. Many explicit analytic solutions of the Z-K equation are obtained. The methods used to solve the Z-K equation can be employed in further work to establish new solutions for other nonlinear partial differential equations.  相似文献   

11.
The (2 1)-dimensional Boussinesq equation and (3 1)-dimensional KP equation are studied by using the extended Jacobi elliptic-function method. The exact periodic-wave solutions for the two equations are obtained.  相似文献   

12.
The singular manifold method is used to obtain two general solutions to a (2 1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.  相似文献   

13.
After generalizing the Clarkson-Kruskal direct similarity reduction ansatz, one can obtain various newtypes of reduction equations. Especially, some lower-dimensional turbulent systems or chaotic systems may be obtainedfrom the general form of the similarity reductions of a higher-dimensional Lax integrable model. Furthermore, anarbitrary three-order quasi-linear equation, which includes the Korteweg de-Vries Burgers equation and the generalLorenz equation as two special cases, has been obtained from the reductions of the (2+1)-dimensional dispersive longwave equation system. Some types of periodic and chaotic solutions of the system are also discussed.  相似文献   

14.
Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.  相似文献   

15.
In this paper, we use the classical Lie group symmetry method to get the Lie point symmetries of the (2+1)-dimensional hyperbolic nonlinear Schrödinger (HNLS) equation and reduce the (2+1)-dimensional HNLS equation to some (1+1)-dimensional partial differential systems. Finally, many exact travelling solutions of the (2+1)-dimensional HNLS equation are obtained by the classical Lie symmetry reduced method.  相似文献   

16.
In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more general exact travelling wave solutions for (2+1)-dimensional KK equation by the symmetry method and the (G, /G)-expansion  method. Consequently, we find some new solutions of (2+1)-dimensional KK equation,  including similarity solutions, solitary wave solutions, and  periodic solutions.  相似文献   

17.
New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breaking soliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutions and triangular periodic wave solutions are obtained.  相似文献   

18.
Generalized symmetries with arbitrary functions of time t for the generalized (2 + 1)-dimensional KdV equation was founded by establishing a formal theory of obtaining the solution of one type of higher dimensional PDEs due to LOU (Refs [6]-[9l). These symmetries constitute an infinite dimensional Lie algebra which is a generalization to the well-known wo3 algebra. Obviously, the corresponding symmetry algebra is isomorphic to that of the Kadom tsev-Pe tviashvili (KP) equation.  相似文献   

19.
By employing Hirota bilinear method and Riemann theta functions of genus one,explicit triply periodic wave solutions for the(2+1)-dimensional Boussinesq equation are constructed under the Backlund transformation u =(1 /6)(u0 1) + 2[ln f(x,y,t)] xx,four kinds of triply periodic wave solutions are derived,and their long wave limit are discussed.The properties of one of the solutions are shown in Fig.1.  相似文献   

20.
The real physics models are usually quite complex with some arbitrary parameters which will lead to the nonintegrability of the model.To find some exact solutions of a nonintegrable model with some arbitrary parameters is much more difficult than to find the solutions of a model with some special parameters.In this paper,we make a modification for the usual direct method to find some conditional similarity solutions of a (2 1)-dimensional general nonintegrable KdV equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号