首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
In this paper, we consider the dynamics and chaos control of the self-sustained electromechanical device with and without discontinuity. The amplitude equations are derived in the general case using the harmonic balance method. The model without discontinuity is first considered. The effects of the amplitude of the parametric modulation and some particular coefficients are found in the response curves. The transition to chaotic behavior is found using numerical simulations of the equations of motion. We find that chaos appears in the model between the quasi-periodic and periodic orbits when the amplitude of the external excitation E0 vary. An adaptive Lyapunov control strategy enables us to drive the system from the chaotic states to a targeting periodic orbit. The effects of elasticity and damping on the dynamics of the self-sustained electromechanical system are also derived.  相似文献   

2.
We show that the long-time behavior of the projection of the exact solutions to the Navier-Stokes equations and other dissipative evolution equations on the finite-dimensional space of interpolant polynomials determines the long-time behavior of the solution itself provided that the spatial mesh is fine enough. We also provide an explicit estimate on the size of the mesh. Moreover, we show that if the evolution equation has an inertial manifold, then the dynamics of the evolution equation is equivalent to the dynamics of the projection of the solutions on the finite-dimensional space spanned by the approximating polynomials. Our results suggest that certain numerical schemes may capture the essential dynamics of the underlying evolution equation.

  相似文献   


3.
Oscillations in the concentration of free intracellular calcium ([Ca2+]) play an important role in many cell types. Thus, understanding the mechanisms underlying Ca2+ oscillations is of significant scientific import. There are two basic classes of mechanism that cause these oscillations: (1) positive and negative feedback from calcium to the inositol trisphosphate (IP3) receptor, and (2) positive and negative feedback from calcium to IP3 metabolism. These two classes can be distinguished experimentally by their different responses to pulses of IP3. In general most cells will have both types of mechanism present simultaneously. We show that, when Ca2+ oscillations are driven by these two mechanisms at the same time, one mechanism is dominant. As the strength of each mechanism is varied, the response of the cell exhibits a threshold phenomenon, being governed either by one mechanism or the other, with no ambiguity in the response to a pulse of IP3. We interpret these results, and other responses to IP3 pulses, in terms of a fast-slow time scale analysis of the calcium dynamics, where calcium transport across the cell membrane occurs on a slow time scale.  相似文献   

4.
5.
This is a mathematical and numerical study of liquid dynamics in a horizontal capillary. We present a two-liquids model which takes into account the effects of real phenomena like the outside flow dynamics. Moreover, we report on results obtained by an adaptive numerical method. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
研究了一带比率依赖功能性反应的捕食-被捕食模型的空间斑图.我们得到模型发生Hopf和Turing分支的临界表达式,得到发生Turing斑图发生的精确区域,并给出了数值模拟.我们的结果表明:该模型具有丰富的动力学行为,包括点状、条状以及迷宫状斑图.这些结果说明利用反应扩散方程建模是揭示空间动力学复杂性机理的一个有效工具.  相似文献   

8.
考虑剪应力诱导血管内皮细胞钙离子内流主要取决于经由三磷酸腺苷(ATP)门控离子通道P2X4的钙离子内流这一实验事实,提出一个修正的剪应力诱导钙离子内流模型,认为钙离子内流量不仅取决于细胞膜内外钙离子浓度差,而且受细胞表面ATP浓度调节A·D2同时利用文献中公布的实验结果,建立了一个新的静态ATP分泌模型,并将其整合到修正后的钙离子内流模型中,建立了一个描述动脉内皮细胞内非线性钙离子动力学系统.求解整合后动力学系统的控制方程,可获得内皮细胞在剪应力作用下受ATP调节的钙离子响应.结果表明,与文献中其他模型比较,改进后的模型模拟的结果能更真实地反映实验事实.  相似文献   

9.
We study motion of an one-dimensional Hamiltonian oscillator driven by an external force which is periodic in time and in coordinate as well. It is shown that dynamics of the oscillator is strongly affected by the resonance between spatial and temporal oscillations of the perturbation imposed. In particular, this resonance can induce strong but bounded chaotic diffusion in certain areas of phase space. The model of the Duffing oscillator is used as an example for the numerical simulation.  相似文献   

10.
We consider a Cahn‐Hilliard–type equation with degenerate mobility and single‐well potential of Lennard‐Jones type. This equation models the evolution and growth of biological cells such as solid tumors. The degeneracy set of the mobility and the singularity set of the cellular potential do not coincide, and the absence of cells is an unstable equilibrium configuration of the potential. This feature introduces a nontrivial difference with respect to the Cahn‐Hilliard equation analyzed in the literature. We give existence results for different classes of weak solutions. Moreover, we formulate a continuous finite element approximation of the problem, where the positivity of the solution is enforced through a discrete variational inequality. We prove the existence and uniqueness of the discrete solution for any spatial dimension together with the convergence to the weak solution for spatial dimension d=1. We present simulation results in 1 and 2 space dimensions. We also study the dynamics of the spinodal decomposition and the growth and scaling laws of phase ordering dynamics. In this case, we find similar results to the ones obtained in standard phase ordering dynamics and we highlight the fact that the asymptotic behavior of the solution is dominated by the mechanism of growth by bulk diffusion.  相似文献   

11.
The complex dynamics is explored in a prey predator system with multiple delays. Holling type-II functional response is assumed for prey dynamics. The predator dynamics is governed by modified Leslie-Gower scheme. The existence of periodic solutions via Hopf-bifurcation with respect to both delays are established. An algorithm is developed for drawing two-parametric bifurcation diagram with respect to two delays. The domain of stability with respect to τ1 and τ2 is thus obtained. The complex dynamical behavior of the system outside the domain of stability is evident from the exhaustive numerical simulation. Direction and stability of periodic solutions are also determined using normal form theory and center manifold argument.  相似文献   

12.
We consider a mathematical model which describes the dynamic process of contact between a piezoelectric body and an electrically conductive foundation. We model the material’s behavior with a nonlinear electro-viscoelastic constitutive law; the contact is frictionless and is described with the normal compliance condition and a regularized electrical conductivity condition. We derive a variational formulation for the problem and then, under a smallness assumption on the data, we prove the existence of a unique weak solution to the model. We also investigate the behavior of the solution with respect the electric data on the contact surface and prove a continuous dependence result. Then, we introduce a fully discrete scheme, based on the finite element method to approximate the spatial variable and the backward Euler scheme to discretize the time derivatives. We treat the contact by using a penalized approach and a version of Newton’s method. We implement this scheme in a numerical code and, in order to verify its accuracy, we present numerical simulations in the study of two-dimensional test problems. These simulations provide a numerical validation of our continuous dependence result and illustrate the effects of the conductivity of the foundation, as well.  相似文献   

13.
In this paper, we analyze the spatial pattern of a predator–prey system. We get the critical line of Hopf and Turing bifurcation in a spatial domain. In particular, the exact Turing domain is given. Also we perform a series of numerical simulations. The obtained results reveal that this system has rich dynamics, such as spotted, stripe and labyrinth patterns, which shows that it is useful to use the reaction–diffusion model to reveal the spatial dynamics in the real world.  相似文献   

14.
A method for the numerical solution of fluid dynamics equations is proposed. The evolution of the structure of the laminar flow with increasing Reynolds number and its behavior at the critical Reynolds number Recris analyzed. Various flow modes at Re = Recr are discussed.  相似文献   

15.
Spatiotemporal dynamics of a predator–prey system in presence of spatial diffusion is investigated in presence of additional food exists for predators. Conditions for stability of Hopf as well as Turing patterns in a spatial domain are determined by making use of the linear stability analysis. Impact of additional food is clear from these conditions. Numerical simulation results are presented in order to validate the analytical findings. Finally numerical simulations are carried out around the steady state under zero flux boundary conditions. With the help of numerical simulations, the different types of spatial patterns (including stationary spatial pattern, oscillatory pattern, and spatiotemporal chaos) are identified in this diffusive predator–prey system in presence of additional food, depending on the quantity, quality of the additional food and the spatial domain and other parameters of the model. The key observation is that spatiotemporal chaos can be controlled supplying suitable additional food to predator. These investigations may be useful to understand complex spatiotemporal dynamics of population dynamical models in presence of additional food.  相似文献   

16.
The paper explores an eco-epidemiological model with weak Allee in predator, and the disease in the prey population. We consider a predator-prey model with type II functional response. The curiosity of this paper is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We perform the local and global stability analysis of the equilibrium points and the Hopf bifurcation analysis around the endemic equilibrium point. Further we pay attention to the chaotic dynamics which is produced by disease. Our numerical simulations reveal that the three species eco-epidemiological system without weak-Allee induced chaos from stable focus for increasing the force of infection, whereas in the presence of the weak-Allee effect, it exhibits stable solution. We conclude that chaotic dynamics can be controlled by the Allee parameter as well as the competition coefficients. We apply basic tools of non-linear dynamics such as Poincare section and maximum Lyapunov exponent to identify chaotic behavior of the system.  相似文献   

17.
The susceptible‐infected‐recovered (SIR) model has greatly evidenced epidemiology despite its apparent simplicity. Most applications of the SIR framework use a form of nonlinear incidence to describe the number of new cases per instant. We adapt theorems to analyze the stability of SIR models with a generalized nonlinear incidence structure. These theorems are then applied to the case of standard incidence and incidence resulting from adaptive behavioral response based on epidemiological‐economic theory. When adaptive behavior is included in the SIR model multiple equilibria and oscillatory epidemiological dynamics can occur over a greater parameter space. Our analysis, based on the epidemiological‐economic incidence, provides new insights into epidemics as complex adaptive systems, highlights important nonlinearities that lead to complex behavior, and provides mechanistic motivation for a shift away from standard incidence, and outlines important areas of research related to the complex‐adaptive dynamics of epidemics.  相似文献   

18.
To assure safe ship operations on one hand side and to reduce operational restrictions to a minimum a proper knowledge of the ship's behavior in waves is necessary. One approach to achieve this is to generate an exact mathematical model of a ship and the fluid–structure–interaction in order to determine dangerous and safe operational conditions by analyzing the behavior with present numerical methods from nonlinear dynamics theory. Comparison between numerical simulations and experimental results as well as two sets of save and dangerous conditions for a given model of a real ship are shown. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We consider approximate solutions to nonlinear hyperbolic conservation laws. If the exact solution is unavailable, the truncation error may be the only quantitative measure for the quality of the approximation. We propose a new way of estimating the local truncation error, through the use of localized test-functions. In the convex scalar case, they can be converted intoL loc estimates, following theLip convergence theory developed by Tadmor et al. Comparisons between the local truncation error and theL loc -error show remarkably similar behavior. Numerical results are presented for the convex scalar case, where the theory is valid, as well as for nonconvex scalar examples and the Euler equations of gas dynamics. The local truncation error has proved a reliable smoothness indicator and has been implemented in adaptive algorithms in [Karni, Kurganov and Petrova, J. Comput. Phys. 178 (2002) 323–341].  相似文献   

20.
This paper deals with adaptive synchronization of chaos in the presence of time-varying communication-delays. We consider two bidirectionally coupled systems that seek to synchronize through a signal that each system sends to the other one and is transmitted with an unknown time-varying delay. We show that an appropriate adaptive strategy can be devised that is successful in dynamically identifying the time-varying delay and in synchronizing the two systems. The performance of our strategy with respect to the choice of the initial conditions and the presence of noise in the communication channels is tested by using numerical simulations. Another advantage of our approach is that in addition to estimating the communication-delay, the adaptive strategy could be used to simultaneously identify other parameters, such as, e.g., the unknown time-varying amplitude of the received signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号