首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Several new liquid-crystalline indene and pseudoazulene systems are reported. These molecules give rise to either columnar hexagonal mesophases and/or columnar plastic phases. The unique nature of these compounds stems from their non-classical discotic structure. Although the molecules have rigid aromatic cores, they lack terminal tails and instead the polarizable atoms (S, halogens) or polar groups (CN, CO) act as unusual soft parts. On the basis of many structurally related materials, we conclude that for this type of compound molecular stacking in the solid state is a prerequisite for the appearance of a columnar mesophase, although other intermolecular interactions within the layers are also important in establishing liquid-crystalline order. The behavior reported for these mesomorphic molecules opens up new possibilities in the search for related molecular interactions that might be useful for the construction of supramolecular architectures with particular properties.  相似文献   

2.
The thermotropic mesophase behaviour of an asymmetrically shaped and highly substituted tetrabenzotriazaporphyrin (TBTAP) derivative has been studied by optical microscopy, DSC and X-ray diffraction. The TBTAP macrocycle differs from the more common phthalocyanine ring system by the substitution of a methine for a nitrogen at one meso-position. The TBTAP core was substituted with a single heptadecyl chain at this meso-position and four neopentyl groups were statistically distributed around the peripheral benzene rings. In contrast to an earlier study of this system which described the structure of the mesophase as discotic lamellar, detailed X-ray diffraction study indicates that the TBTAP derivative forms a disordered hexagonal columnar mesophase (Col hd ), with a weak tendency towards antiparallel orientation of neighbouring molecules observed in the form of a weak pseudo-centred rectangular packing.  相似文献   

3.
Syndiotactic polystyrene (sPS) has various crystalline forms such as α, β, γ, and δ forms, and a mesophase depending on the preparation method. In this study, we focused on the mesophase with the molecular cavity of sPS, which is obtained by step‐wise extraction of the guest molecules from the sPS δ form. To prepare the mesophase containing different shapes and sizes of the cavity, two kinds of the sPS δ form membrane cast from either toluene or chloroform solution were first prepared and then the guest molecules were removed by a step‐wise extraction method using acetone and methanol. We could succeed in the preparation of two kinds of mesophase with different shapes and sizes of the molecular cavity. Either toluene or chloroform vapor sorption to the sPS mesophase membranes was examined at 25 °C. Sorption analysis indicates that the mesophase with large molecular cavities can mainly sorb large molecules; on the other hand, the mesophase with small cavities can sorb only the small molecules, and is unable to sorb a large amount of large molecule because the cavity was too small to sorb the large molecules. Therefore, the sPS mesophase membrane has sorption selectivity based on the size of the molecular cavity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 238–245, 2004  相似文献   

4.
Liquid crystal phases formed by bent-shaped (or "banana") molecules are currently of great interest. Here we investigate by Monte Carlo computer simulations the phases formed by rigid banana molecules modeled combining three Gay-Berne sites and containing either one central or two lateral and transversal dipoles. We show that changing the dipole position and orientation has a profound effect on the mesophase stability and molecular organization. In particular, we find a uniaxial nematic phase only for off-center dipolar models and tilted phases only for the one with terminal dipoles.  相似文献   

5.
Terphenyls with two lateral ortho-fluoro-substituents have proved to be excellent host materials for ferroelectric (SC*) mixtures. The compounds reported here are biphenyls with the same arrangement of lateral substituents but with a trans-4-alkylcyclohexylethyl moiety as one of the terminal substituents. Such three ring systems retain the ability to generate the SC mesophase and have low melting points. Low temperature lithiation procedures were used to prepare phenylboronic acids, which were then used in palladium catalysed cross-coupling procedures to prepare the desired compounds. The effect of molecular structure on the mesophase types and thermal stabilities is discussed and comparisons are made with analogous terphenyls and biphenyls with open chain terminal substituents.  相似文献   

6.
The trivial statement that liquid crystals are formed on the base of either mesogenic organic molecules or molecules with amphiphilic structure may be applied to polymers as well. But at the same time it became clear that polymer LC world in certain sense is richer than the low-molecular one and more and more one finds mesophase and LC polymers based on non-mesogenic macromolecules. Linear polyphosphazenes, polysiloxanes, some ladder polymers etc. exhibit mesophase behavior in absence of any mesogenic groups in their structure.  相似文献   

7.
Novel amphiphilic molecules consisting of a rigid 2‐phenylthiophene core, with a polar flexible tri(oxylethylene) moiety attached to the phenyl ring and one or two alkyl chains attached to the thiophene ring at the other side have been synthesized by using Ni(II) and Pd(0) catalyzed coupling reaction as key steps. The tri(oxylethylene) moieties were terminated with hydroxyl group, sodium carboxylate group and lithium carboxylate group respectively. The thermotropic and solvent induced liquid crystalline behavior of these substances was investigated by polarized optical microscopy, differential scanning calorimetry and X‐ray diffraction. Thereby the influence of the terminal groups attached to the tri(oxylethylene) moities as well as the influence of the length and the number of the alkyl chains on the mesophase behavior were investigated. The single alkyl chain Na‐carboxylate termianted derivatives show smectic A phases, double alkyl chain Na‐carboxylate terminated derivatives show a thermo tropic hexagonal columnar mesophase, while columnar mesophases are found in both single and double alkyl chain Li‐carbonate terminated derivatives. The model for molecular organization in the hexagonal columnar mesophase is established.  相似文献   

8.
Catanionic surfactants result from the pairing of oppositely charged amphiphilic molecules, forming a new class of surfactant molecules with various interesting lyotropic and thermotropic properties. With the aim of probing the role of both headgroup chemical nature/structure and molecular shape, a series of catanionic surfactants were synthesized. The cationic portion of the molecule is kept constant, being the dioctadecyldimethylammonium double chain. Different single-chained surfactants with varying headgroups and chain lengths are used as the anionic pair. The thermotropic behavior has been studied by DSC and the mesophase structural investigated by polarized light microscopy. The results indicate that, for a given chain length, parameters such as headgroup polarity and charge density, as well as volume, influence the catanionic surfactant behavior. The thermodynamic parameters are qualitatively evaluated, considering the headgroup chemical nature and the overall molecular structure.  相似文献   

9.
A series of high temperature alkyl and alkoxy biphenyltetracarboxydiimide liquid crystals have been prepared under ball mill method using solvent-free mechanochemical approach. The thermal properties of the prepared compounds were investigated by deferential scanning calorimetry (DSC) measurements and the textures were identified by polarized optical microscope (POM). The compounds showed smectic mesomorphic behaviour. The results showed the increasing nature of transition temperature Cr-SmC with chain length with increments of the SmC mesophase range. However, the mesophase range of the SmA was decreased with the terminal chain length either for the alkyl or alkoxy terminal groups. Moreover, the DFT theoretical calculations have been conducted give a detailed projection of the structure of the prepared compounds. A conformational investigation of the biphenyl part has been studied. A deep illustration of the experimental mesomorphic behaviour has been discussed in terms of the calculated aspect ratio. A projection of the frontier molecular orbitals as well as molecular electrostatic potential has been studied to show the effect of the polarity of the terminal chains on the level and the gap of the FMOs and the distribution of electrostatic charges on the prepared molecules.  相似文献   

10.
A series of nematic liquid crystal (LC) monomers containing a reactive group (double bonds) in the lateral substituent was designed and synthesised. Length of the lateral substituted groups that have one double bond varied from 1 to 4 methylene units. Length of the terminal substituted groups varied from 2 to 5 methylene units. The molecular structures of the intermediates and the LC monomers were characterised by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and nuclear magnetic resonance (NMR) spectroscopy. The thermal phase behaviour of the monomers was investigated by differential scanning calorimetry (DSC) and polarised optical microscopy (POM) coupled with hot stage. Some molecules (V15, V25) with high aspect ratio exhibit enantiotropic nematic mesophase. The other compounds (V12, V22, V42, V43) show monotropic nematic mesophase during cooling. The relationship between the structure and mesomorphic property is also discussed.  相似文献   

11.
12.
Two complementary classes of molecules based on a triphenylene core are synthesized. The two‐dimensional (2D) assemblies of these molecules deposited on a highly oriented pyrolytic graphite (HOPG) surface are identified with scanning tunneling microscopy (STM). Structures with large cavities are formed by symmetric molecules, while uniform and closely packed stripe‐assembled structures are obtained for asymmetric molecules. X‐ray diffraction (XRD) results support the observation of an ordered hexagonal columnar mesophase for symmetric molecules and a rectangular columnar mesophase for asymmetric molecules. The study demonstrates that the substitution symmetry has significant effects on the assembly characteristics of molecular architectures and also on the three‐dimensional (3D) macroscopic properties of the molecular materials.  相似文献   

13.
Four new donor–acceptor triads (D–A–D) based on discotic and arylene mesogens have been synthesized by using Sonogashira coupling and cyclization reactions. This family of triads consists of two side‐on pending triphenylene mesogens, acting as the electron‐donating groups (D), laterally connected through short lipophilic spacers to a central perylenediimide (PI), benzo[ghi]perylenediimide (BI), or coronenediimide (CI) molecular unit, respectively, playing the role of the electron acceptor (A). All D–A–D triads self‐organize to form a lamello‐columnar oblique mesophase, with a highly segregated donor–acceptor (D–A) heterojunction organization, consequent to efficient molecular self‐sorting. The structure consists in the regular alternation of two disrupted rows of triphenylene columns and a continuous row of diimine species. High‐resolution STM images demonstrate that PI‐TP2 forms stable 2D self‐assembly nanostructures with some various degrees of regularity, whereas the other triads do not self‐organize into ordered architectures. The electron‐transport mobility of CI‐TP2, measured by time‐of‐flight at 200 °C in the mesophase, is one order of magnitude higher than the hole mobility. By means of this specific molecular designing idea, we realized and demonstrated for the first time the so‐called p–n heterojunction at the molecular level in which the electron‐rich triphenylene columns act as the hole transient pathways, and the coronenediimide stacks form the electron‐transport channels.  相似文献   

14.
By modifying the molecular dipole moments with lateral monofluorine substituent, improved mesophase stabilities were obtained for novel benzoxazole derivatives, 2-(4?-alkoxy-3-fluorobiphenyl-4-yl)-benzoxazole liquid crystals (coded as nPPF(3)Bx). The series of nPPF(3)Bx with lateral monofluorine substituent ortho to benzoxazole group have larger calculated dipole moments by about 2 D than the corresponding fluorine-substituted analogs (compounds I) with lateral monofluorine ortho to alkoxy group; it is interesting to note that they show lower melting and clearing points but better mesophase stability with wider mesophase ranges for the molecules with both polar (NO2, Cl) and nonpolar (CH3, H) terminal groups. Meanwhile, compounds nPPF(3)Bx show greater red-shifted photoluminescence emissions than compounds I, which suggest that π–π interaction between molecules is reinforced by the enhanced dipole–dipole interaction caused by increased dipole moments. These results suggest that modification of the molecular dipole moment is an effective method to improve the mesophase stability of the classical mesogenic compounds.  相似文献   

15.
The structure and properties of a chiral nematic phase, which reflects one hand of circularly polarized light in a narrow region of wavelength, of fully acetylated (ethyl) cellulose [(acetyl) (ethyl) cellulose, AEC] in acrylic acid (AA) were studied in comparison with (ethyl) cellulose (EC). AEC mesophase formed right-handed chiral nematic structure while EC formed left-handed one. AEC mesophase showed higher birefringence and reflection intensity. The relationship between the reflection wavelength and the polymer concentration was negatively correlated for both AEC and EC mesophases. The relationship between the reflection wavelength and the molecular weight was also negative for AEC mesophase whereas positive for EC mesophase. AEC mesophase was solidified by photopolymerization of AA moiety. It was revealed that the optical properties of AEC mesophase could be preserved by photopolymerization, since the resulting solid material reflects selectively one hand of circularly polarized light.  相似文献   

16.
宋怀河  陈晓红  刘朗  张碧江 《化学学报》2001,59(7):1130-1134
以固体核磁共振光谱为主要分析手段,比较研究了两种合成中间相沥青吡啶不溶组分的结构。结果表明:均四甲苯基中间相沥青吡啶不溶组分具有较低的芳香度和缩合度,富含甲基和环烷结构,分子呈渺位结合实际合构型;与此相反,四氢萘基中间相沥青则呈现很高的芳香度和缩合度,芳环上仅带有一些甲基取代基,平均分子为完全迫位缩合构型,造成这种结构差异的原因在于前驱齐聚物的结构及缩聚程度的不同。  相似文献   

17.
Chromonic liquid crystals are currently receiving increased attention because they have applications in a wide range of products. In this study, we have compared the chromonic mesophase behaviour of four azo dyes with similar chemical structures. Our objective is to determine if there is an obvious link between mesophase formation and dye chemical structure. Orange G does not form mesophases over the concentration range examined (saturated solution > ~20–30 wt%). The other three compounds all form nematic (N) and hexagonal (H) mesophases, but over very different concentration ranges. X-ray diffraction shows that the ordered Edicol Sunset Yellow (ESY) aggregates present in the mesophases have a single molecule cross section, while those of CI Acid Red have a cross section equivalent to six to eight molecules, probably organised in a ‘water-filled pipes’ structure. NMR quadrupole splittings of 2H2O demonstrate that water binding to the aggregates is similar to that found for surfactant lyotropic mesophases. The sodium (23Na) quadrupole splittings for Orange II and CI Acid Red are similar to the values found for surfactant hexagonal phases, suggesting that most sodium ions are ‘bound’ to the aggregates. This is unlike the behaviour of ESY where only one of the two sodium ions is bound.  相似文献   

18.
Lipid-based lyotropic liquid crystals (LLCs) show great potential for applications in fields as diverse as food technology, cosmetics, pharmaceutics, or structural biology. Recently, these systems have provided a viable alternative to the difficult process of membrane protein crystallization, owing to their similarities with cell membranes. Nonetheless, the process of in-meso crystallization of proteins still remains poorly understood. In this study, we demonstrate that in-meso crystal morphologies of lysozyme (LSZ), a model hydrophilic protein, can be controlled by both the composition and symmetry of the mesophase, inferring a possible general influence of the LLC space group on the protein crystal polymorphism. Lysozyme was crystallized in-meso from three common LLC phases (lamellar, inverse hexagonal, and inverse bicontinuous cubic) composed of monolinolein and water. Different mixing ratios of mesophase to crystallization buffer were used in order to tune crystallization both in the bulk mesophase and in excess water conditions. Two distinct mechanisms of crystallization were shown to take place depending on available water in the mesophases. In the bulk mesophases, protein nuclei form and grow within structural defects of the mesophase and partially dehydrate the system inducing order-to-order transitions of the liquid crystalline phase toward stable symmetries in conditions of lower hydration. The formed protein crystals eventually macrophase separate from the mesophase allowing the system to reach its final symmetry. On the other hand, when excess water is available, protein molecules diffuse from the water channels into the excess water, where the crystallization process can take place freely, and with little to no effect on the structure and symmetry of the lyotropic liquid crystals.  相似文献   

19.
In this article we investigate the complexity of the molecular architectures of liquid crystals based on rod-like mesogens. Starting from simple monomeric systems founded on fluoroterphenyls, we first examine the effects of aromatic core structure on mesophase formation from the viewpoint of allowable polar interactions, and then we model these interactions as a function of terminal aliphatic chain length. By incorporating a functional group at the end of one, or both, of the aliphatic chains we study the effects caused by intermolecular interfacial interactions in lamellar phases, and in particular the formation of synclinic or anticlinic modifications. We then develop these ideas with respect to dimers, trimers, tetramers, etc. We show, for dendritic systems, that at a certain level of molecular complexity the local mesogenic interactions become irrelevant, and it is gross molecular shape that determines mesophase stability. The outcome of these studies is to link the complexity of the molecular interactions at the nanoscale level, which lead to the creation of the various liquid-crystalline polymorphs, with the formation of mesophases that are dependent on complex shape dependencies for mesoscopic supermolecular architectures.  相似文献   

20.
Charge distribution effects on polar head groups for a mixture of amphiphilic molecules at the water/oil interface were studied. For this purpose a model which allowed us to investigate the charge effects exclusively was created. As a molecular model we used the structure of sodium dodecyl sulfate. Then we prepared molecules with the same molecular structure but with different charge distributions in order to have one cationic and one nonionic molecule. So, in this way, we were able to focus only in the charge effects. The monolayer mixtures were composed of anionic/nonionic and cationic/nonionic surfactants. Simulations of these systems show that the location of the different surfactants at the interface is determined by the interaction and the charge distribution of the molecules. Due to the difference in the charge distribution of the surfactant monolayers, the water molecules present distinct orientations in the mixture. Finally, it was found that the electrostatic potential difference across the interface depended on the interactions (charge distribution) of the anionic, cationic, and nonionic molecules in the mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号