首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report that 2,6‐lutidine?trichloroborane (Lut?BCl3) reacts with H2 in toluene, bromobenzene, dichloromethane, and Lut solvents producing the neutral hydride, Lut?BHCl2. The mechanism was modeled with density functional theory, and energies of stationary states were calculated at the G3(MP2)B3 level of theory. Lut?BCl3 was calculated to react with H2 and form the ion pair, [LutH+][HBCl3?], with a barrier of ΔH=24.7 kcal mol?1G=29.8 kcal mol?1). Metathesis with a second molecule of Lut?BCl3 produced Lut?BHCl2 and [LutH+][BCl4?]. The overall reaction is exothermic by 6.0 kcal mol?1rG°=?1.1). Alternate pathways were explored involving the borenium cation (LutBCl2+) and the four‐membered boracycle [(CH2{NC5H3Me})BCl2]. Barriers for addition of H2 across the Lut/LutBCl2+ pair and the boracycle B?C bond are substantially higher (ΔG=42.1 and 49.4 kcal mol?1, respectively), such that these pathways are excluded. The barrier for addition of H2 to the boracycle B?N bond is comparable (ΔH=28.5 and ΔG=32 kcal mol?1). Conversion of the intermediate 2‐(BHCl2CH2)‐6‐Me(C5H3NH) to Lut?BHCl2 may occur by intermolecular steps involving proton/hydride transfers to Lut/BCl3. Intramolecular protodeboronation, which could form Lut?BHCl2 directly, is prohibited by a high barrier (ΔH=52, ΔG=51 kcal mol?1).  相似文献   

2.
Several new mono- and dinuclear eta (5)-pentamethylcyclopentadienyl (Cp*) iridium(III) complexes bearing 5-methyltetrazolate (MeCN 4 (-)) have been synthesized and their molecular and crystal structures have been determined. For complexes incorporating 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), both mononuclear kappa N (2)-coordinated and dinuclear mu-kappa N (1):kappa N (3)-bridging MeCN 4 complexes were obtained: [Cp*Ir(bpy or phen)(MeCN 4-kappa N (2))]PF 6 ( 1 or 3) and [{Cp*Ir(bpy or phen)} 2(mu-MeCN 4-kappa N (1):kappa N (3))](PF 6) 3 ( 2 or 4), respectively. It was confirmed by X-ray analysis that the dinuclear complex in 2 has a characteristic structure with a pyramidal pocket constructed from a mu-kappa N (1):kappa N (3)-bridging MeCN 4 (-) and two bpy ligands. In the case of analogous complexes with N, N-dimethyldithiocarbamate (Me 2dtc (-)), yellow platelet crystals of mononuclear kappa N (1)-coordinated complex, [Cp*Ir(Me 2dtc)(MeCN 4-kappa N (1))].HN 4CMe ( 5.HN 4CMe), and yellow prismatic crystals of dinuclear mu-kappa N (1):kappa N (4)-bridging one, [{Cp*Ir(Me 2dtc)} 2(mu-MeCN 4-kappa N (1):kappa N (4))]PF 6 ( 6), were deposited. The kappa N (1)- and kappa N (1):kappa N (4)-bonding modes of MeCN 4 (-) in these complexes presumably arise from the compactness of the Me 2dtc (-) coligand. 6 is the first example in which tetrazolates act as a mu-kappa N (1):kappa N (4)-bridging ligand. Furthermore, the molecular and crystal structures of dinuclear complexes having mu-kappa (2) S, N:kappa S-bridging 2-pyridinethiolate (2-Spy (-)) or 8-quinolinethiolate (8-Sqn (-)) ligands have been determined: [(Cp*Ir) 2(mu-2-Spy or 8-Sqn-kappa (2) S, N:kappa S) 2] ( 7 or 8). These thiolato-bridging complexes were stable toward the addition of 5-methyltetrazole (HN 4CMe), owing to the characteristic intramolecular stacking interaction between the pyridine or the quinoline rings. The 2-Spy complex of 7, however, reacted with an excess amount of Na(N 4CMe), resulting in cleavage of the IrN(py) bond and coordination of MeCN 4 (-) in the mu-kappa N (2):kappa N (3)-bridging mode: [(Cp*Ir) 2(mu-2-Spy-kappa S:kappa S) 2(mu-MeCN 4-kappa N (2):kappa N (3))]PF 6 ( 9). This bridging mode of MeCN 4 (-) was also observed in the triply bridging MeCN 4 complex: [(Cp*Ir) 2(mu-MeCN 4-kappa N (2):kappa N (3)) 3]PF 6 ( 10). In these various MeCN 4 complexes, the structural parameters of the MeCN 4 moiety were not perturbed by the difference in the bonding modes.  相似文献   

3.
The previously unknown titanium(IV)-containing mu-hydroxo dimeric heteropolytungstate (Bu4N)7[(PTiW11O39)2-OH] (TBA salt of H1) has been synthesized, starting from H5PTiW11O40, and characterized by elemental analysis, multinuclear (31P, 17O, 183W) NMR, IR, FAB-MS, cyclic voltammetry, and potentiometric titration. 31P NMR reveals that H1 (delta -12.76) readily forms in MeCN from the Keggin monomer (POM), PTiW11O40(5-) (2, delta -13.34), upon the addition of 1.5 equiv of H+, via the protonated species, P(TiOH)W11O39(4-) (H2, delta -13.44). The ratio of H1, 2, and H2, which are present in equilibrium in MeCN solution at 25 degrees C, depends on the concentration of both H+ and H2O. The Ti-O-Ti linkage readily reacts with nucleophilic reagents, such as H2O and ROH, to yield monomeric Keggin derivatives. mu-Hydroxo dimer H1 shows higher catalytic activity than 2 for thioether oxidation by hydrogen peroxide in acetonitrile. The reaction proceeds readily at room temperature and affords the corresponding sulfoxide and sulfone in ca. quantitative yield. The addition of H2O2 to H1 or H2 results in the formation of a peroxo complex, most likely the hydroperoxo complex P(TiOOH)W11O39(4-) (I), which has 31P NMR resonance at -12.43 ppm. The rate of the formation of I is higher from H2 than from H1. When H1 is used as a catalyst precursor, the rates of the thioether oxidation and peroxo complex formation increase with increasing H2O concentration, which favors the cleavage of H1 to H2. H2O2 in MeCN slowly converts 2 to another peroxotitanium complex, P(TiO2)W11O39(5-) (II), which has 31P NMR resonance at -12.98 ppm. Peroxo complexes I and II differ in their protonation state and interconvert fast on the 31P NMR time scale. Addition of 1 equiv of H+ completely converts II to I, while 1 equiv of OH- completely converts I to II. 31P NMR confirms that I is stable under turnover conditions (thioether, H2O2, MeCN). Contrary to two-phase systems such as dichloroethane/aqueous H2O2, no products resulting from the destruction of the Keggin POM were detected in MeCN in the presence of H2O2 (a 500-fold molar excess). The reactivity of I, generated in situ from II by adding 1 equiv of H+, toward organic sulfides under stoichiometric conditions was confirmed using both 31P NMR and UV-vis spectroscopy. This is a rare demonstration of the direct stoichiometric oxidation of an organic substrate by a titanium peroxo complex.  相似文献   

4.
The first quaternary ammonium‐group‐containing [FeFe]‐hydrogenase models [(μ‐PDT)Fe2(CO)42‐(Ph2P)2N(CH2)2NMe2BzBr}] ( 2 ; PDT=propanedithiolate) and [(μ‐PDT)Fe2(CO)4{μ‐(Ph2P)2N(CH2)2NMe2BzBr}] ( 4 ) have been prepared by the quaternization of their precursors [(μ‐PDT)Fe2(CO)42‐(Ph2P)2N(CH2)2NMe2}] ( 1 ) and [(μ‐PDT)Fe2(CO)4{μ‐(Ph2P)2N(CH2)2NMe2}] ( 3 ) with benzyl bromide in high yields. Although new complexes 1 – 4 have been fully characterized by spectroscopic and X‐ray crystallographic studies, the chelated complexes 1 and 2 converted into their bridged isomers 3 and 4 at higher temperatures, thus demonstrating that these bridged isomers are thermodynamically favorable. An electrochemical study on hydrophilic models 2 and 4 in MeCN and MeCN/H2O as solvents indicates that the reduction potentials are shifted to less‐negative potentials as the water content increases. This outcome implies that both 2 and 4 are more easily reduced in the mixed MeCN/H2O solvent than in MeCN. In addition, hydrophilic models 2 and 4 act as electrocatalysts and achieve higher icat/ip values and turnover numbers (TONs) in MeCN/H2O as a solvent than in MeCN for the production of hydrogen from the weak acid HOAc.  相似文献   

5.
Photochemical ligand substitution of fac-[Re(X2bpy)(CO)3(PR3)]+ (X2bpy = 4,4'-X2-2,2'-bipyridine; X = Me, H, CF3; R = OEt, Ph) with acetonitrile quantitatively gave a new class of biscarbonyl complexes, cis,trans[Re(X2bpy)(CO)2(PR3)(MeCN)]+, coordinated with four different kinds of ligands. Similarly, other biscarbonylrhenium complexes, cis,trans-[Re(X2bpy)(CO)2(PR3)(Y)]n+ (n = 0, Y = Cl-; n = 1, Y = pyridine, PR'3), were synthesized in good yields via photochemical ligand substitution reactions. The structure of cis,trans-[Re(Me2bpy)(CO)2[P(OEt)3](PPh3)](PF6) was determined by X-ray analysis. Crystal data: C38H42N2O5F6P3Re, monoclinic, P2(1/a), a = 11.592(1) A, b = 30.953(4) A, c = 11.799(2) A, V = 4221.6(1) A3, Z = 4, 7813 reflections, R = 0.066. The biscarbonyl complexes with two phosphorus ligands were strongly emissive from their 3MLCT state with lifetimes of 20-640 ns in fluid solutions at room temperature. Only weak or no emission was observed in the cases Y = Cl-, MeCN, and pyridine. Electrochemical reduction of the biscarbonyl complexes with Y = Cl- and pyridine in MeCN resulted in efficient ligand substitution to give the solvento complexes cis,trans-[Re(X2bpy)(CO)2(PR3)(MeCN)]+.  相似文献   

6.
Lang JP  Xu QF  Zhang WH  Li HX  Ren ZG  Chen JX  Zhang Y 《Inorganic chemistry》2006,45(26):10487-10496
In our working toward the rational design and synthesis of cluster-based supramolecular architectures, a set of new [WS4Cu4]- or [MoOS3Cu3]-based supramolecular assemblies have been prepared from reactions of preformed cluster compounds [Et4N]4[WS4Cu4I6] (1) and [(n-Bu)4N]2[MoOS3Cu3X3] (2, X = I; 3, X = SCN) with flexible ditopic ligands such as dipyridylsulfide (dps), dipyridyl disulfide (dpds), and their combinations with dicyanamide (dca) anion and 4,4'-bipy. The cluster precursor 1 reacted with dps or dpds and sodium dicyanamide (dca) in MeCN to produce [WS4Cu4I2(dps)3].2MeCN (4.2MeCN) and [WS4Cu4(dca)2(dpds)2].Et2O.2MeCN (5.Et2O.2MeCN), respectively. On the other hand, treatment of 2 with dpds in DMF/MeCN afforded [MoOS3Cu3I(dpds)2].0.5DMF.2(MeCN)0.5 (6.0.5DMF.2(MeCN)0.5) while reaction of 3 with sodium dicyanamide (dca) and 4,4'-bipy in DMF/MeCN gave rise to [MoOS3Cu3(dca)(4,4'-bipy)1.5].DMF.MeCN (7.DMF.MeCN). Compounds 4.2MeCN, 5.Et2O.2MeCN, 6.0.5DMF.2(MeCN)0.5, and 7.DMF.MeCN have been characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray crystallography. Compound 4 contains a 2D layer array made of the saddle-shaped [WS4Cu4] cores interlinked by three pairs of Cu-dps-Cu bridges. Compound 5 has another 2D layer structure in which the [WS4Cu4] cores are held together by four pairs of Cu-dca-Cu and Cu-dpds-Cu bridges. Compound 6 displays a 1D spiral chain structure built of the nido-like [MoOS3Cu3] cores via two pairs of Cu-dpds-Cu bridges. Compound 7 consists of a 2D staircase network in which each [MoOS3Cu3(4,4'-bipy]2 dimeric unit interconnects with four other equivalent units by a pair of 4,4'-bipy ligands and two pairs of dca anions. The [WS4Cu4] core in 4 or 5 and the [MoS3Cu3] core in 7 show a planar 4-connecting node and a seesaw-shaped 4-connecting node, respectively, which are unprecedented in cluster-based supramolecular compounds. The successful assembly of 4-7 from the three cluster precursors 1-3 through flexible ditopic ligands provides new routes to the rational design and construction of complicated cluster-based supramolecular arrays.  相似文献   

7.
Disulfide-bridged dinuclear ruthenium complexes [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-X)(mu,eta(2)-S(2))][ZnX(3)(MeCN)] (X = Cl (2), Br (4)), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(2)(mu,eta(1)-S(2))](CF(3)SO(3)) (5), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(2)-S(2))](BF(4)) (6), and [[Ru(MeCN)(2)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(1)-S(2))](CF(3)SO(3))(3) (7) were synthesized, and the crystal structures of 2 and 4 were determined. Crystal data: 2, triclinic, P1, a = 15.921(4) A, b = 17.484(4) A, c = 8.774(2) A, alpha = 103.14(2) degrees, beta = 102.30(2) degrees, gamma = 109.68(2) degrees, V = 2124(1) A(3), Z = 2, R (R(w)) = 0.055 (0.074); 4, triclinic, P1 a = 15.943(4) A, b = 17.703(4) A, c = 8.883(1) A, alpha = 102.96(2) degrees, beta = 102.02(2) degrees, gamma = 109.10(2) degrees, V = 2198.4(9) A(3), Z = 2, R (R(w)) = 0.048 (0.067). Complexes 2 and 4 were obtained by reduction of the disulfide-bridged ruthenium complexes [[RuX(P(OMe)(3))(2)](2)(mu-X)(2)(mu,eta(1)-S(2))] (X = Cl (1), Br (3)) with zinc, respectively. Complex 5 was synthesized by oxidation of 2 with AgCF(3)SO(3). Through these redox steps, the coordination mode of the disulfide ligand was converted from mu,eta(1) in 1 and 3 to mu,eta(2) in 2 and 4 and further reverted to mu,eta(1) in 5. Electrochemical studies of 6 indicated that similar conversion of the coordination mode occurs also in electrochemical redox reactions.  相似文献   

8.
Reactions of two preformed trinuclear W/Cu/S clusters, [A](2)[WS(4)(CuCN)(2)] (1: A = Et(4)N; 2: A = PPh(4)), with different concentrations of acetic acid in MeCN generate two interesting 2D polymeric clusters [Et(4)N](3)[(WS(4)Cu(2))(2)(mu-CN)(3)].2MeCN (3), and [PPh(4)][WS(4)Cu(3)(mu-CN)(2)].MeCN (4), respectively. Compound 4 can also be readily obtained in a high yield from the reaction of 2 with equimolar [Cu(MeCN)(4)]PF(6) in MeCN. These compounds have been characterized by elemental analysis, IR spectra, thermal analysis, and single-crystal X-ray diffraction. An X-ray analysis reveals that compound 3 retains the WS(4)Cu(2) cluster core, which serves as a 3-connecting node to link equivalent nodes via single cyanide bridges, forming an anionic 2D (6,3) net. Compound 4 consists of a T-shaped WS(4)Cu(3) core, which also acts as a 3-connecting node, with links to 3 equivalent clusters either through single or double cyanide bridges, affording a different anionic 2D (6,3) network. The acetic acid induced aggregation of 3 and 4 from the two cluster precursors 1 and 2 suggests that this simple synthetic strategy is likely to be applicable to many related systems.  相似文献   

9.
The previously unknown Zr(IV)-monosubstituted Keggin-type polyoxometalates (Zr-POMs), (n-Bu4N)7H[{PW11O39Zr(mu-OH)}2] (1), (n-Bu4N)8[{PW11O39Zr(mu-OH)}2] (2), and (n-Bu4N)9[{PW11O39Zr}2(mu-OH)(mu-O)] (3) differing in their protonation state, have been prepared starting from heteropolyacid H5PW11ZrO40.14H2O. The compounds were characterized by elemental analysis, potentiometric titration, X-ray single-crystal structure, and IR, Raman, and 31P and 183W NMR spectroscopy. The single-crystal X-ray analysis of 2 reveals that two Keggin structural units [PW11O39Zr]3- are linked through two hydroxo bridges Zr-(OH)-Zr with Zr(IV) in 7-fold coordination. The IR spectra of 1 and 2 show a characteristic band at 772 cm(-1), which moves to 767 cm(-1) for 3, reflecting deprotonation of the Zr-(OH)-Zr bond. Potentiometric titration with methanolic Bu4NOH indicates that 1-3 contain 2, 1, and 0 acid protons, respectively. (83W NMR reveals Cs symmetry of 2 and 3 in dry MeCN, while for 1, it discovers nonequivalence of its two subunits and their distortion resulting from localization of the acidic proton on one of the Zr-O-W bridging O atoms. The (31)P NMR spectra of 2 and 3 differ insignificantly in dry MeCN, showing only signals at delta -12.46 and -12.44 ppm, respectively, while the spectrum of 1 displays two resonances at delta -12.3 (narrow) and -13.2 (broad) ppm, indicating slow proton exchange on the (31)P NMR time scale. The theoretical calculations carried out at the density functional theory level on the dimeric species 1-3 propose that protonation at the Zr-O-Zr bridging site is more favorable than protonation at Zr-O-W sites. Calculations also revealed that the doubly bridged hydroxo structure is thermodynamically more stable than the singly bridged oxo structure, in marked contrast with analogous Ti- and Nb-monosubstituted polyoxometalates. The interaction of 1-3 with H(2)O and H(2)O(2) in MeCN has been studied by both (31)P and (183)W NMR. The stability of the [PW(11)O(39)ZrOH](4-) structural unit toward at least 100-fold excess of H2O2 in MeCN was confirmed by both NMR and Raman spectroscopy. The interaction of 1 and 2 with H2O in MeCN produces most likely monomeric species (n-Bu4N)3+n[PW11O39Zr(OH)(n(H2O)(3-n)] (n = 0 and 1) showing a broad 31P NMR signal at delta -13.2 ppm, while interaction with H2O2 leads to the formation of an unstable peroxo species (delta -12.3 ppm), which reacts rapidly with cyclohexene, producing 2-cyclohexen-1-one and trans-cyclohexane-1,2-diol. Both 1 and 2 show a pronounced catalytic activity in H2O2 decomposition and H2O2-based oxidation of organic substrates, including cyclohexene, alpha-pinene, and 2,3,6-trimethylphenol. The oxidation products are consistent with those of a homolytic oxidation mechanism. On the contrary, 3 containing no acid protons reacts with neither H2O nor H2O2 and shows negligible catalytic activity. The Zr-monosubstituted polyoxometalates can be used as tractable homogeneous probes of Zr single-site heterogeneous catalysts in studying mechanisms of H2O2-based oxidations.  相似文献   

10.
A novel one-dimensional (1D) heterometallic chain, [[Rh(2)(dfpma)(2)(MeCN)(4)](2)[Ag(MeCN)(4)]][PF(6)](5) (1), is afforded from the in situ reaction of [ClRh(cod)](2) with [Ag(MeCN)(4)][PF(6)] and dfpma (dfpma = bis(difluorophosphine)methylamine). Dichroic crystals, which are obtained from MeCN/Et(2)O solutions, crystallize in the monoclinic space group C2/m with a = 13.570(5) A, b = 20.895(9) A, c = 13.810(6) A, beta = 104.904(7) degrees, V = 3784(3) A(3), Z = 4. X-ray diffraction studies reveal an asymmetric unit comprising two Rh(I)(2) dimers and a square planar Ag(I) cation; this subunit propagates to form a 1D heterometallic chain. Compound 1 displays novel spectroscopic properties in the solid state, including temperature-dependent luminescence.  相似文献   

11.
Ti(IV)-monosubstituted Keggin-type polyoxometalates (Ti-POMs), mu-oxo dimer [Bu4N]8[(PTiW11O39)2O] (1), and three monomers [Bu4N]4[PTi(L)W11O39], where L = OH (2), OMe (3), and OAr (4, ArOH = 2,3,6-trimethylphenol (TMP)), have been prepared starting from mu-hydroxo dimer [Bu4N]7[(PTiW11O39)2OH] (5) or heteropolyacid H5PW11TiO40 or both. The compounds have been characterized by elemental analysis, IR, UV-vis, and multinuclear (31P, 1H, 183W) NMR. The interaction of 1 and 3-5 with H2O in MeCN produces 2. The hydrolysis constants, estimated from 31P and 1H NMR data, are 0.006 and 0.04 for 1 and 3, respectively. Studies by 31P NMR, IR, potentiometric titration, and cyclic voltammetry revealed that 1-3 and 5 afford the same protonated titanium peroxo complex [Bu4N]4[HPTi(O2)W11O39] (I) upon interaction with aqueous H2O2 in MeCN. The rates of formation of I correlate with the rates of hydrolysis of the Ti-POMs and follow the order of 5 > 1 > 3. A two-step mechanism of the reaction of Ti-POMs with H2O2, which involves hydrolysis of the Ti-L bonds to yield 2 followed by fast interaction of 2 with hydrogen peroxide producing I, is suggested. The equilibrium constant for the reaction of 2 with H2O2 to yield I and H2O, estimated using 31P NMR, is 10. The interaction of the Ti-POMs with TMP follows the trends similar to their interaction with H2O) and requires preliminary hydrolysis of the Ti-L bonds. All of the Ti-POMs catalyze the oxidation of TMP with H2O2 in MeCN to give 2,3,5-trimethyl-p-benzoquinone and 2,2',3,3',5,5'-hexamethyl-4,4'-biphenol. The product distribution is similar for all of the Ti-POMs. The catalytic activities of the Ti-POMs correlate with the rates of formation of I and follow the order of 2 > 5 > 1 > 3. The findings lay a basis for a better understanding of the nature of the reactivity of titanium in Ti-catalyzed oxidations.  相似文献   

12.
The thiotungstate [Et4N]2[OW(WS4)2], [Et4N]2.1, containing the linear [[S2W(VI)(mu-S)2]2W(IV)=O] core, was prepared from [Et4N]2[WS4] in the presence of the sulfide scavenger Cd2+. Addition of 1,2-bis(o-diphenylphosphinophenyl)ethane (diphosphine) and Cu+ or Ag+ to solutions of 1 in MeCN/DMF led to coordination of the (diphosphine)Cu/Ag fragments to the terminal sulfido ligands of 1, yielding novel linear pentanuclear, heterometallic clusters [mu-[OW(IV)(DMF)(W(VI)S4)2][M(diphosphine)]2], 2 (M = Cu) and 3 (M = Ag). Along with 2, the trinuclear cluster [[mu-(W(VI)S4)[Cu(diphosphine)(2)]], 4, was also obtained. The molecular and crystal structures of [Et4N]2.1, 2.MeCN, 3.MeCN, and 4.2MeCN.CH2Cl2 have been determined.  相似文献   

13.
A series of group 12 metal thiocarboxylate species, M(SOCR)(2)Lut(2) [M = Cd, Zn; R = CH(3), C(CH(3))(3); Lut = 3,5-dimethylpyridine (lutidine)], were synthesized to investigate their potential to act as precursors for the formation of metal sulfide materials. These species were expected to undergo thiocarboxylic anhydride elimination to give stoichiometric metal sulfides and remove the organic supporting ligands cleanly. These species were characterized by (1)H, (13)C, and (where appropriate) (113)Cd NMR spectroscopies, TGA, elemental analysis, and single-crystal X-ray diffraction. The spectroscopic and analytical data were consistent with the formulas identified above, and in the solid state the compounds are monomeric with approximate tetrahedral metal coordination environments and monodentate S-bond thiocarboxylate ligands. Crystal data for Cd(SOCCH(3))(2)Lut(2): crystallized in the triclinic space group P&onemacr;, with a = 8.267(1) ?, b = 9.467(1) ?, c = 14.087(1) ?, alpha = 94.04(1) degrees, beta = 91.49(1) degrees, gamma = 104.03(1) degrees, and Z = 2. Thermal decomposition of these compounds in the solid state or in solution resulted in formation of the corresponding metal sulfide at low temperatures, as seen by powder X-ray diffraction. Evidence for thiocarboxylic anhydride elimination was documented by NMR in solution phase reactions. The effects on thiocarboxylic anhydride elimination, resulting from varying M, R, or solvent media, were examined by heating NMR tube solutions of M(SOCR)(2)Lut(2) in pyridine or toluene. Heating toluene or pyridine solutions of Cd(SOCCH(3))(2)Lut(2) resulted in formation of nanocrystalline, sphalerite CdS, as determined by X-ray diffraction and TEM. These preliminary reactivity studies have revealed the great potential of this highly tailorable chemical system as precursors to group 12 metal sulfido species.  相似文献   

14.
Reaction of [V(X)(OR)3] (X=O, Np-tolyl; R=Et, nPr or tBu) with p-tert-butylhexahomotrioxacalix[3]areneH3, LH3, affords the air-stable complexes [{V(X)L}n] (X=O, n=1 (1); X=Np-tolyl, n=2 (2)). Alternatively, 1 is readily available either from interaction of [V(mes)3THF] with LH3, and subsequent oxidation with O2 or upon reaction of LLi3 with [VOCl3]. Reaction of [V(Np-tolyl)(OtBu)3] with 1,3-dimethylether-p-tert-butylcalix[4]areneH2, Cax(OMe)2(OH)2, afforded [{VO(OtBu)}2(mu-O)Cax(OMe)2(O)2].2 MeCN (42 MeCN), in which two vanadium atoms are bound to just one calix[4]arene ligand; the n-propoxide analogue of 4, namely [{VO(OnPr)}2(mu-O)Cax(OMe)2(O)2].1.5 MeCN (51.5 MeCN), has also been isolated from a similar reaction using [V(O)(OnPr)3]. Reaction of [VOCl3], LiOtBu, (Me3Si)2O and Cax(OMe)2(OH)2 gave [{VO(OtBu)Cax(OMe)2(O)2}2Li4O2].8 MeCN (68 MeCN), in which an Li4O4 cube (two of the oxygen atoms are derived from the calixarene ligands) is sandwiched between two Cax(OMe)2(O)2. The reaction between [V(Np-tolyl)(OtBu)3] and Cax(OMe)2(OH)2, afforded [V(Np-tolyl)(OtBu)2Cax(OMe)2(O)(OH)]5 MeCN (75 MeCN), in which two tert-butoxide groups remain bound to the tetrahedral vanadium atom, which itself is bound to the calix[4]arene through only one phenolic oxygen atom. Reaction of p-tert-butylcalix[4]areneH4, Cax(OH)4 and [V(Np-tolyl)(OnPr)3] led to loss of the imido group and formation of the dimeric complex [{VCax(O)4(NCMe)}2].6 MeCN (86 MeCN). Monomeric vanadyl oxo- and imidocalix[4]arene complexes [V(X)Cax(O)3(OMe)(NCMe)] (X=O (11), Np-tolyl (12)) were obtained by the reaction of the methylether-p-tert-butylcalix[4]areneH3, Cax(OMe)(OH)3, and [V(X)(OR)3] (R=Et or nPr). Vanadyl calix[4]arene fragments can be linked by the reaction of 2,6-bis(bromomethyl)pyridine with Cax(OH)4 and subsequent treatment with [VOCl3] to afford the complex [{VOCax(O)4}2(mu-2,6-(CH2)2C5H3N)].4 MeCN (134 MeCN). The compounds 1-13 have been structurally characterised by single-crystal X-ray diffraction. Upon activation with methylaluminoxane, these complexes displayed poor activities, however, the use of dimethylaluminium chloride and the reactivator ethyltrichloroacetate generates highly active, thermally stable catalysts for the conversion of ethylene to, at 25 degrees C, ultra-high-molecular-weight (>5, 500,000), linear polyethylene, whilst at higher temperature (80 degrees C), the molecular weight of the polyethylene drops to about 450,000. Using 1 and 2 at 25 degrees C for ethylene/propylene co-polymerisation (50:50 feed) leads to ultra-high-molecular-weight (>2,900,000) polymer with about 14.5 mol% propylene incorporation. The catalytic systems employing the methyleneoxa-bridged complexes 1 and 2 are an order of magnitude more active than the bimetallic complexes 5 and 13, which, in turn, are an order of magnitude more active than pro-catalysts 8, 11 and 12. These differences in activity are discussed in terms of the structures of each class of complex.  相似文献   

15.
The reaction of [ReBr(2)(MeCN)(NO)(P∩P)] (P∩P = 1,1'-bisdiphenylphosphinoferrocene (dppfc) (1a), 1,1'-bisdiisopropylphosphinopherrocene (diprpfc) (1b), 2,2'-bis(diphenylphosphino)diphenyl ether (dpephos) (1c), 10,11-dihydro-4,5-bis(diphenylphosphino)dibenzo[b,f]oxepine (homoxantphos) (1d) and 4,6-bis(diphenylphosphino)-10,10-dimethylphenoxasilin (Sixantphos) (1e)) led in the presence of HSiEt(3) and ethylene to formation of the ethylene hydride complexes [ReBrH(η(2)-C(2)H(4))(NO)(P∩P)] (3a,b,d), the MeCN ethyl complex [ReBr(Et)(MeCN)(NO)(dpephos)] (5c) and two ortho-metalated stereoisomers of [ReBr(η(2)-C(2)H(4))(NO)(η(3)-o-C(6)H(4)-Sixantphos)] 8e(up) and 8e(down). The complexes 3a,b,d, and 5c and the isomers of 8e showed high catalytic activity (TOFs ranging from 22 to 4870 h(-1), TONs up to 24000) in the hydrogenation of monosubstituted olefins. For 8e(down) and 8e(up) a remarkable functional group tolerance and catalyst stability were noticed. Kinetic experiments revealed k(obs) to be first order in c(cat) and c(H(2)) and zeroth order in c(olefin). Mechanistic studies and DFT calculations suggest the catalysis to proceed along an Osborn-type catalytic cycle with olefin before H(2) addition. The unsaturated key intermediates [ReBrH(NO)(P∩P)] (2a-e) could be intercepted with MeCN as [ReBrH(MeCN)(NO)(P∩P)] (10a-d) complexes or isolated as dimeric μ(2)-(H)(2) complexes [{ReBr(μ(2)-H)(NO)(P∩P)}(2)] (9b and 9e). Variation of the bidentate ligand demonstrated a crucial influence of the (large)-bite-angle on the catalytic performance and reactivity of 3a,b,d, 5c, and 8e.  相似文献   

16.
Exploiting the ability of the [M(SC[O]Ph)(4)](-) anion to behave like an anionic metalloligand, we have synthesized [Li[Ga(SC[O]Ph)(4)]] (1), [Li[In(SC[O]Ph)(4)]] (2), [Na[Ga(SC[O]Ph)(4)]] (3), [Na(MeCN)[In(SC[O]Ph)(4)]] (4), [K[Ga(SC[O]Ph)(4)]] (5), and [K(MeCN)(2)[In(SC[O]Ph)(4)]] (6) by reacting MX(3) and PhC[O]S(-)A(+) (M = Ga(III) and In(III); X = Cl(-) and NO(3)(-); and A = Li(I), Na(I), and K(I)) in the molar ratio 1:4. The structures of 2, 4, and 6 determined by X-ray crystallography indicate that they have a one-dimensional coordination polymeric structure, and structural variations may be attributed to the change in the alkali metal ion from Li(I) to Na(I) to K(I). Crystal data for 2 x 0.5MeCN x 0.25H(2)O: monoclinic space group C2/c, a = 24.5766(8) A, b = 13.2758(5) A, c = 19.9983(8) A, beta = 108.426(1) degrees, Z = 8, and V = 6190.4(4) A(3). Crystal data for 4: monoclinic space group P2(1)/c, a = 10.5774(7) A, b = 21.9723(15) A, c = 14.4196(10) A, beta = 110.121(1) degrees, Z = 4, and V = 3146.7(4) A(3). Crystal data for 6: monoclinic space group P2(1)/c, a = 12.307(3) A, b = 13.672(3) A, c = 20.575(4) A, beta = 92.356(4) degrees, Z = 4, and V = 3458.8(12) A(3). The thermal decomposition of these compounds indicated the formation of the corresponding AMS(2) materials.  相似文献   

17.
Treatment of oxidized clusters [(Cl4cat)(MeCN)MoFe3S4Cl3]2- (1) and [(Meida)MoFe3S4Cl3]2- (2) with tertiary phosphines in the presence of NaBPh4 in acetonitrile results in chloride substitution at the iron sites and the formation of clusters with the reduced [MoFe3S4]2+ core. Thus, 1 is a precursor to [(Cl4cat)(MeCN)MoFe3S4(PR3)3] (R = But (3), Pri (4)) and [(Cl4cat)2(Et3P)2Mo2Fe6S8(PEt3)4] (5). Cluster 2 affords [[(Meida)MoFe3S4(PCy3)3]4Fe2(mu-Cl)L2]3+ (L = THF (6), MeCN (7)). The structures of 3-7 were established by X-ray analysis. Clusters 3 and 4 are single cubanes, centrosymmetric 5 (previously reported in a different space group: Demadis, K. D.; Campana, C. F.; Coucouvanis, D. J. Am. Chem. Soc. 1995, 117, 7832) is a double cubane with a rhomboidal Fe2S2 bridge, and 6 and 7 are tetracubanes. In the latter, four Meida oxygen atoms from different cubanes bind each of two central high-spin Fe(II) atoms in trans-Fe(mu-Cl)LO4 coordination. The topology of these clusters is not precedented. Zero-field M?ssbauer parameters for all clusters are reported. Isomer shift considerations suggest the formulation [Mo3+Fe2+2Fe3+S4] for reduced clusters. Voltammetry of 3 and 4 reveals four-member electron transfer series encompassing the oxidation levels [MoFe3S4]4+,3+,2+,+ in the potential interval + 1.0 to -1.3 V vs SCE in dichloromethane. Compared to the clusters with monoanionic ligands at the iron sites, phosphine ligation shifts redox potentials to more positive values. This effect arises from reduction of cluster negative charge and the tendency of phosphines to stabilize lower oxidation states. The synthesis of reduced clusters 4 from 1 and of [Fe4S4(PPri3)4]+ from [Fe4S4Cl4]2- is accompanied by the formation of Pri3PS, detected by 31P NMR, indicating that the phosphine is the reductant. This result implies a similar function of tertiary phosphines in the synthesis of 3 and 5-7. (Cl4cat = tetrachlorocatecholate(2-); Meida = N-methyliminodiacetate(2-).)  相似文献   

18.
Redox potentials of photosensitive cyclometalated RuII derivatives of 2-phenylpyridine or 2-(4-tolyl)pyridine are controllably decreased by up to 0.8 V within several minutes. This is achieved by irradiation of the ruthena(II)cycles cis-[Ru(o-X-2-py)(LL)(MeCN)2]PF6 (2, X = C6H4 (a) or 4-MeC6H3 (b), LL = 1,10-phenanthroline or 2,2'-bipyridine). The cis geometry of the MeCN ligands has been confirmed by the X-ray structural studies. The sigma-bound sp2 carbon of the metalated ring is trans to LL nitrogen. Complexes 2 are made from [Ru(o-X-2-py)(MeCN)4]PF6 (1) and LL. This "trivial" ligand substitution is unusual because 1a reacts readily with phen in MeCN as solvent to give cis-[Ru(o-C6H4-2-py)(phen)(MeCN)2]PF6 (2c) in a 83% yield, but bpy does not afford the bpy-containing 2 under the same conditions. cis-[Ru(o-C6H4-2-py)(bpy)(MeCN)2]PF6 (2e) has been prepared in CH2Cl2 (74%). Studies of complexes 2c,e by cyclic voltammetry in MeOH in the dark reveal RuII/III quasy-reversible redox features at 573 and 578 mV (vs Ag/AgCl), respectively. A minute irradiation 2c and 2e converts them into new species with redox potentials of -230 and 270 mV, respectively. An exceptional potential drop for 2c is accounted for in terms of a photosubstitution of both MeCN ligands by methanol. ESR, 1H NMR, and UV-vis data indicate that the primary product of photolysis of 2c is an octahedral monomeric low-spin (S = 1/2) RuIII species, presumably cis-[RuIII(o-C6H4-2-py)(phen)(MeOH)2]2+. The primary photoproduct of bpy complex 2e is cis-[RuII(o-C6H4-2-py)(bpy)(MeCN)(MeOH)]+, and this accounts for a lower decrease in the redox potential. Irradiation of 2c in the presence of added chloride affords [(phen)(o-C6H4-2-py)ClRuIIIORuIVCl(o-C6H4-2-py)(phen)]PF6, a first mu-oxo-bridged mixed valent dimer with a cyclometalated unit. The structure of the dimer has been established by X-ray crystallography.  相似文献   

19.
Heterobimetallic hexanuclear cyano-bridged complexes, [{Fe(Tp)(CN)3}4{M(MeCN)(H2O)2}(2)].10H2O.2MeCN [M = Ni (1), Co (2), Mn (3); Tp = hydrotris(1-pyrazolyl)borate], have been synthesized in H2O-MeCN solution. Complexes 1-3 are isostructural and hexanuclear with [{Fe(Tp)(CN)3}4{M(MeCN)(H2O)2}2] units linked by hydrogen bonds to form a 2D-structure in the solid state. Complex 1 is a canted antiferromagnet that undergoes a field-induced spin-flop-like transition at approximately 1 T and 2 K. At 4.45 K 1 has a transition to paramagnetic state of noninteracting S = 4 magnetic clusters. However, 2 and 3 show antiferromagnetic intracluster coupling. Facile loss of solvent from 2 alters the local symmetry resulting in changing the intracluster interaction from antiferro- to ferromagnetic.  相似文献   

20.
An unusual PFO(3)(2-)-templated "inverse Keggin" polyanion, [Mo(12)O(46)(PF)(4)](4-), has been isolated from the degradation reaction of an {Mo(132)}-type Keplerate to [PMo(12)O(40)](3-) by [Cu(MeCN)(4)](PF(6)) in acetonitrile. (31)P-NMR studies suggest a structure-directing role for [Cu(MeCN)(4)](+) in the formation of the highly unusual all-inorganic inverse Keggin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号