首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用化学氧化还原法制备了氧化石墨烯,进一步超声破碎剥离,得到纳米氧化石墨烯,并对其进行聚乙二醇(PEG)的功能化修饰后载药顺铂。 采用扫描电子显微镜(SEM)、紫外-可见吸收光谱(UV-Vis)、傅立叶变换红外光谱(FTIR)对石墨烯纳米载药体系进行表征,细胞存活率实验(MTT)法检验石墨烯纳米载药体系对人口腔鳞癌(KB)细胞的杀伤作用。 结果表明,石墨烯纳米载药体系对顺铂的负载率为42.4%,聚乙二醇修饰后可以降低纳米氧化石墨烯的细胞毒性并提高生物相容性,对KB细胞具有双重的杀伤作用,为纳米氧化石墨烯在肿瘤治疗的临床应用提供了理论依据。  相似文献   

2.
Graphene related materials are widely expected to play a major role as materials for the construction of supercapacitors. We demonstrate here that graphene oxides prepared by various well-established methods exhibit dramatically different capacitances. We exfoliated graphite oxide sonographically to graphene oxide (GO) and we reduced GO by chemical or electrochemical means to chemically reduced graphene oxide (CRGO) and electrochemically reduced graphene oxide (ERGO); in addition, graphite oxide was thermally exfoliated leading to thermally reduced graphene oxide (TRGO). We found clear dependence of weight specific capacitance upon amount of oxygen containing groups presented on the surface of these graphenes. GO exhibits the lowest and TRGO the highest values of weight specific capacitance.  相似文献   

3.
Magnetic graphene oxide was modified by four imidazole‐based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid‐phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field‐emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single‐factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid–liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid‐modified magnetic graphene oxide materials, and amount of 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic‐liquid‐modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties.  相似文献   

4.
It is well established that graphene oxide can be prepared by the oxidation of graphite using permanganate or chlorate in an acidic environment. Recently, however, the synthesis of graphene oxide using potassium ferrate(VI) ions has been reported. Herein, we critically replicate and evaluate this new ferrate(VI) oxidation method. In addition, we test the use of potassium ferrate(VI) for the synthesis of graphene oxide under various experimental routes. The synthesized materials are analyzed by a number of analytical methods in order to confirm or disprove the possibility of synthesizing graphene oxide by the ferrate(VI) oxidation route. Our results confirm the unsuitability of using ferrate(VI) for the oxidation of graphite on graphene oxide because of its high instability in an acidic environment and low oxidation power in neutral and alkaline environments.  相似文献   

5.
The surface of graphene oxide was modified by bis(3-aminopropyl)-terminated polyethylene glycol to produce a composite graphene–polyethylene glycol. The graphene oxide/polyethylene glycol maximum absorption peak in the ultraviolet–visible spectrum was redshifted, and transmission electron microscope images showed that graphene oxide was cleaved into small nanosheets to form graphene oxide/polyethylene glycol. The dispersibility of graphene oxide/polyethylene glycol in physiological solution was higher than for graphene oxide. The optimum composite of graphene oxide/polyethylene glycol was used as a quencher in a fluorescence resonance energy transfer aptasensor for the determination of lysozyme detection. The results showed that graphene oxide/polyethylene glycol rapidly and efficiently quenched the fluorescence of the dye-labeled aptamer. The fluorescence was recovered by adding lysozyme to the system. The aptamer fluorescence intensity exhibited a strong linear dependence on the lysozyme concentration from 50 to 300?nM, and the lysozyme detection limit was approximately 11?nM. This method was used for the determination of lysozyme in egg whites, demonstrating that this approach is a promising alternative for the determination of lysozyme.  相似文献   

6.
本文研究氧化石墨烯的合成方法及其在生物传感器中的应用.通过Hummer法氧化天然石墨粉制得氧化石墨,在蒸馏水中利用超声分散将氧化石墨剥片,从而合成了氧化石墨烯(GO).通过透射电镜图表征了氧化石墨烯的形貌并通过红外光谱证实氧化石墨烯的形成.将所合成的氧化石墨烯与三角形貌的金纳米颗粒(prism AuNPs)、辣根过氧化...  相似文献   

7.
Graphene oxide nanosheets have attracted multidisciplinary attention due to their unique physicochemical properties. Herein, few-layered graphene oxide nanosheets were synthesized from graphite using a modified Hummers method and were characterized by TEM, AFM, Raman spectroscopy, XPS, FTIR spectroscopy, TG-DTA and acid-base titrations. The prepared few-layered graphene oxide nanosheets were used as adsorbents for the preconcentration of U(VI) ions from large volumes of aqueous solutions as a function of pH, ionic strength and temperature. The sorption of U(VI) ions on the graphene oxide nanosheets was strongly dependent on pH and independent of the ionic strength, indicating that the sorption was mainly dominated by inner-sphere surface complexation rather than by outer-sphere surface complexation or ion exchange. The abundant oxygen-containing functional groups on the surfaces of the graphene oxide nanosheets played an important role in U(VI) sorption. The sorption of U(VI) on graphene oxide nanosheets increased with an increase in temperature and the thermodynamic parameters calculated from the temperature-dependent sorption isotherms suggested that the sorption of U(vi) on graphene oxide nanosheets was an endothermic and spontaneous process. The maximum sorption capacities (Q(max)) of U(VI) at pH 5.0 ± 0.1 and T = 20 °C was 97.5 mg g(-1), which was much higher than any of the currently reported nanomaterials. The graphene oxide nanosheets may be suitable materials for the removal and preconcentration of U(VI) ions from large volumes of aqueous solutions, for example, U(VI) polluted wastewater, if they can be synthesized in a cost-effective manner on a large scale in the future.  相似文献   

8.
通过冷冻干燥技术,将不同量的氧化石墨烯与海藻酸钠和壳聚糖复合,构建复合支架材料.研究了不同的氧化石墨烯含量(质量分数0, 0.3%, 0.5%, 0.7%, 1%)对支架材料微观结构、孔隙率、溶胀比、体外降解性能、机械性能及生物相容性的影响,以确定复合支架中最佳氧化石墨烯含量.研究结果表明,复合材料呈固态海绵状结构,具有一定的形态可塑性;扫描电子显微镜观察发现,各组支架均为三维网状结构,随着氧化石墨烯含量的增加,孔隙尺寸逐渐降低,孔壁厚度增加,孔隙尺寸在140~240μm之间;随氧化石墨烯含量的增加,复合支架溶胀比和体外降解速率逐渐降低,而机械强度明显增强;体外细胞毒性显示,当氧化石墨烯质量分数为0.3%时,细胞存活率最高,而当氧化石墨烯含量增高时,细胞活性会被明显抑制,造成细胞死亡.因此,氧化石墨烯在复合支架中最佳含量为0.3%.  相似文献   

9.
In the present study, graphene oxide reinforced two‐phase electromembrane extraction (EME) coupled with gas chromatography was applied for the determination of methamphetamine as a model analyte in biological samples. The presence of graphene oxide in the hollow fiber wall can increase the effective surface area, interactions with analyte and polarity of support liquid membrane that leads to an enhancement in the analyte migration. To investigate the influence of the presence of graphene oxide in the support liquid membrane on the extraction efficiency, a comparative study was performed between graphene oxide and graphene oxide/EME methods. The extraction parameters such as type of organic solvent, pH of the donor phase, stirring speed, time, voltage, salt addition and the concentration of graphene oxide were optimized. Under the optimum conditions, the proposed microextraction technique provided low limit of detection (2.4 ng/mL), high preconcentration factor (195–198) and high relative recovery (95–98.5%). Finally, the method was successfully employed for the determination of methamphetamine in urine and hair samples.  相似文献   

10.
《Analytical letters》2012,45(11):1821-1834
In recent years, considerable attention has been paid to developing economical yet rapid glucose sensors using graphene and its composites. Recently, the excellent properties of graphene and metal oxide nanoparticles have been combined to provide a new approach for highly sensitive glucose sensors. This review focuses on the development of graphene functionalized with different nanostructured metal oxides (such as copper oxide, zinc oxide, nickel oxide, titanium dioxide, iron oxide, cobalt oxide, and manganese dioxide) for use as glucose biosensors. Additionally, a brief introduction of the electrochemical principles of glucose biosensors (including amperometric, potentiometric, and conductometric) is presented. Finally, the current status and future prospects are outlined for graphene/metal oxide nanomaterials in glucose sensing.  相似文献   

11.
The creep recovery properties of different graphene-doped rubber and the effect of temperature on them were studied. Doping graphene, especially with the surface functional group or surface microstructure, can significantly improve the creep resistance of natural rubber (NR). The permanent creep of each composite tested under the same conditions for 20 min. Graphene oxide, hydrazine hydrate reduced graphene oxide, and 3-aminopropyltriethoxysilane (APTS) grafted graphene oxide was 33%, 16%, and 51% lower than those filled with carbon black respectively. Four parameter model and Weibull distribution function used to analyze and evaluate the creep and recovery test results of composite rubber. These curve fitting results can adequately describe the influence of different types of nanofillers on the creep and recovery properties of composite rubber. The long-term creep of composites forecasted by the time-temperature superposition principle (TTSP). The results show that graphene doping can improve the creep resistance of the rubber. Besides, graphene oxide and surface-modified graphene oxide had better creep resistance than reduced graphene oxide filled natural rubber. It can see that the interfacial properties between the graphene sheet and the natural rubber matrix play an essential role in the creep and recovery properties of graphene/natural rubber composites.  相似文献   

12.
采用水热法制备了氢氧化镍纳米线/三维石墨烯复合材料及作为比较的三维石墨烯、氢氧化镍纳米线、还原氧化石墨烯和氢氧化镍纳米线/还原氧化石墨烯, 通过X射线衍射、扫描电镜、热失重分析和氮气吸脱附表征了材料的形貌、结构和组成, 并采用循环伏安法和恒电流充放电测试了复合材料的电化学性能. 结果表明: 氢氧化镍纳米线/三维石墨烯复合材料中直径为20-30 nm的氢氧化镍纳米线和三维结构的石墨烯紧密结合, 相互交联形成网状结构, 其比表面积达到136 m2·g-1, 孔径分布20-50 nm, 氢氧化镍纳米线的含量达到88% (w,质量分数). 在6 mol·L-1的KOH电解液中, 复合材料的比电容在1 A·g-1电流密度下达到1664 F·g-1, 在1 A·g-1电流密度下循环3000 次后的比电容保持率为93%. 将复合材料的比电容和循环性能与氢氧化镍纳米线、氢氧化镍纳米线/还原氧化石墨烯、三维石墨烯和还原氧化石墨烯的性能进行比较, 发现三维石墨烯较还原氧化石墨烯具有更高的比表面积和三维多孔结构, 可以更大地提高活性物质的利用率, 进而提高复合材料的比电容和稳定性.  相似文献   

13.
Theoretical and Experimental Chemistry - The catalytic properties of N-doped hydrazine-reduced graphene oxide (N-RGO) and thermally reduced graphene oxide (TRGO) in the hydrogenation of ethylene by...  相似文献   

14.
A hybrid film consisting of graphene oxide covered with poly(dimethylsiloxane) was prepared via spin coater and followed by thermal annealing to improve the bond strength of the polymerized systems. Direct patterning on both graphene oxide and hybrid graphene oxide–poly(dimethylsiloxane) foils by ion microbeam was performed to induce localized reduction in the ion irradiated material. It is well established that the ion irradiation of graphene oxide induces modifications in its electrical, mechanical, and optical properties and disorder in the carbon crystal structure and defect production. The presence of poly(dimethylsiloxane) can be useful as it confers flexibility to the produced pattern and oxygen permeability from the graphene oxide surface. Rutherford backscattered spectroscopy and elastic recoil detection analysis were performed to evaluate the compositional changes in the composite. Atomic force microscopy studied the pattern fidelity. The electrical conductivity of the hybrid material was used to evaluate the changes induced during the proton irradiation of the material.  相似文献   

15.
Tungsten oxide (W) decorated titanium oxide (T) adsorbed onto a graphene (Gr) and modified the glassy carbon electrode for the electrochemical quantification of riboflavin (RF) in edible food and pharmaceuticals. For comparison, nanocomposites are formed using graphene oxide (GO), reduced graphene oxide (rGO) and pure graphite (G) sheets to study the electrochemical activities towards riboflavin. The ternary WTGr modified GCE shows the highest electrocatalytic activity due to synergetic interactions between the metal oxide and graphene. The electrochemical observations are supported by the SEM, HRTEM, XRD, UV-Vis, Zeta potential (ζ) and size data. The sensor shows a wide linear range 20 nM–2.5 μM with a detection limit 25.24 nM and sensitivity (4.249×10−8 A/nM). The fabricated sensor is validated in real samples.  相似文献   

16.
Journal of Solid State Electrochemistry - In this study, graphene oxide (GO) was chemically reacted with sodium borohydride (NaBH4) to form reduced graphene oxide (rGO). rGO and rGO/Zn...  相似文献   

17.
Electrochemical applications of graphene are of great interest to many researchers as they can potentially lead to crucial technological advancements in fabrication of electrochemical devices for energy production and storage, and highly sensitive sensors. There are many routes towards fabrication of bulk quantities of chemically modified graphenes (CMG) for applications such as electrode materials. Each of them yields different graphene materials with different functionalities and structural defects. Here, we compare the electrochemical properties of five different chemically modified graphenes: graphite oxide, graphene oxide, thermally reduced graphene oxide, chemically reduced graphene oxide, and electrochemically reduced graphene oxide. We characterized these materials using transmission electron microscopy, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry, which allowed us to correlate the electrochemical properties with the structural and chemical features of the CMGs. We found that thermally reduced graphene oxide offers the most favorable electrochemical performance among the different materials studied. Our findings have a profound impact for the applications of chemically modified graphenes in electrochemical devices.  相似文献   

18.
KH-570功能化石墨烯的制备与表征   总被引:1,自引:0,他引:1  
采用Hummers法对天然石墨进行氧化处理制备了氧化石墨烯,通过γ-甲基丙烯酰氧丙基三甲氧基硅烷与氧化石墨烯反应得到功能化氧化石墨烯,然后在水合肼的作用下制备了功能化石墨烯。未烘干的功能化石墨烯在超声处理下,能稳定分散在体积比为9∶1(V/V)的乙醇/水、丙酮/水或N,N-二甲基甲酰胺/水的混合溶剂中。用傅立叶变换红外光谱、原子力显微镜、X射线光电子能谱及X射线衍射对样品结构、形貌进行了分析。结果表明,KH-570上的硅氧烷与氧化石墨烯上的羟基发生了反应,经水合肼还原后,功能化石墨烯的无序度增加,层间距也比功能化氧化石墨烯的缩小了。功能化石墨烯在DMF/水中呈高度剥离状态,片层厚度为1.1~2.3 nm。  相似文献   

19.
Synthesis and studies of graphite oxide started more than 150 years ago and turned into a boom by the measurements of the outstanding physical properties of graphene. A series of preparation protocols emanated trying to optimize the synthesis of graphene oxide in order to obtain a less defective material, as source for graphene. However, over-oxidation of the carbon framework hampered establishing structure-property relationships. Here, the fact that two different synthetic methods for graphene oxide preparation lead to very similar types of graphene oxide with a preserved graphene lattice is demonstrated. Either sodium chlorate in nitric acid (similar to Brodie's method) or potassium permanganate in sulfuric acid (similar to Hummers’ method) treatment are possible; however, reaction conditions must be controlled. With a preserved carbon lattice analytical differences between the samples relate to the altered on-plane functionality. Consequently, terming preparation protocols “according to Brodie's/Hummers’ method” is not sufficient.  相似文献   

20.
改进液相氧化还原法制备高性能氢气吸附用石墨烯   总被引:1,自引:0,他引:1  
以液相氧化还原法为基础,并在分散剂十二烷基苯磺酸钠(SDBS)作用下制备得到高质量石墨烯,有效避免了在此过程中石墨烯大量团聚的现象.采用X射线衍射(XRD)、拉曼光谱(RS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和原子力显微镜(AFM)等分析手段对石墨烯样品进行了表征.XRD结果体现了石墨、氧化石墨和石墨烯晶型结构的区别;SEM和TEM结果显示石墨烯呈网格状,表面平整,缺陷少;AFM分析表明样品中单层石墨烯厚度约为1.3 nm,同时也存在少许双层结构.BET测试法得到石墨烯的比表面积高达1206 m2·g-1,考察了石墨烯在高压条件下对H2的吸附性能.通过对方法改进前后所制备的石墨烯样品进行比较,结果表明,十二烷基苯磺酸钠的加入有效地减小了石墨烯的大量团聚,且得到了高质量的石墨烯.在25和55℃条件下,高质量石墨烯对氢气的吸附量分别达到1.7%(w)和1.1%(w),比之前研究结果有了很大提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号