共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
基于微流控芯片试样引入技术的研究是目前微流控芯片分析领域内的重要研究方向之一,其目的是实现宏观外部系统(进行10^-6~1L级液体的操作)与芯片系统(进行10^-12~10^-9 L级液体的操作)的衔接(world-to-chip interfacing).目前文献报道的微流控分析系统,包括芯片流动注射系统, 相似文献
3.
4.
微流控芯片分析系统是当前分析科学及分析仪器重要的发展前沿,是20世纪90年代初发展起来的微分析系统的主要组成部分.将微流控分析系统应用于电泳分离,与传统的电泳分离手段相比较,具有微型化、集成化、速度快等特点. 相似文献
5.
6.
7.
8.
9.
研制了一种新型在柱式微流控芯片电导检测装置,利用电解质介导连接分离样品和检测电极,避免了电极的污染和中毒.在芯片的分离通道上设有双T型通道和十字型通道,分别用于进样和检测.检测电极分别置于十字通道口两端的储液池中,电极与芯片相互独立,简化了实验装置,便于电极的更换和清洗.采用缓冲溶液作介导电解质,减小了因两者浓度或种类不同而导致的基线漂移.与非接触电导接触相比,本装置在较低的检测电压(2.5~4.0 V)和频率(700~1700 Hz)范围即可获得相对灵敏的信号.在15 mmol/L MES-His(pH 5.8)的缓冲体系下,K+与Na+的检出限分别为0.5和0.1 μmol/L. 相似文献
10.
11.
12.
芯片毛细管电泳激光诱导荧光快速分离检测麻黄碱类兴奋剂 总被引:1,自引:0,他引:1
研究用芯片毛细管电泳激光诱导荧光检测系统分离测定经7-chloro-4-n itrobenzo-2-oax-1,3-d iazole(NBD-C l)衍生的麻黄碱和伪麻黄碱的实验条件。采用胶束毛细管电动色谱分离体系(12 mmol/L SDS 10mmol/L硼砂缓冲液,pH 9.0),在45 mm长的通道上实现了麻黄碱和伪麻黄碱的快速分离,一次分离小于1.5m in。10~100 mg/L范围内,峰高与浓度呈良好的线性关系,麻黄碱、伪麻黄碱的检出限分别是0.83 mg/L和1.10 mg/L。所建立的方法应用于尿中麻黄碱和伪麻黄碱的分离测定,取得满意的结果。 相似文献
13.
14.
将基于缺口型试样管阵列的微流控试样引入系统与紫外检测-毛细管电泳系统联用,建立可实现自动化、高通量、连续试样引入的微型化毛细管电泳系统。试样引入系统由底部加工有缺口的试样管阵列构成,阵列固定于一维平移台上。实验时,通过平移试样管阵列,使毛细管和电极依次经缺口进入装有试样或缓冲液的试样管内,完成电动进样和电泳分离操作。该系统被用来快速分离复方新诺明片中的磺胺甲嗯唑(SMZ)和甲氧苄氨嘧啶(TMP),以考察系统分析性能。分析通量达到72样/h,试样间携出量为1.4%,对SMZ的分离塔板高度11μm。采用紫外检测对SMZ和TMP检出限(3σ)分别为9.8mg/L和12.2mg/L。 相似文献
15.
16.
可用于多种生物分析的高性能芯片毛细管电泳系统 总被引:2,自引:0,他引:2
本文采用激光诱导荧光的检测方法,搭建出高灵敏度的双通道共聚焦芯片毛细管电泳的检测系统。采用湿法刻蚀玻璃的方法获得了芯片管道的模具,并采用浇铸法在聚二甲基硅氧烷上获得高质量的微管道。将聚二甲基硅氧烷和石英玻璃贴合成为毛细管电泳芯片,该电泳芯片散热性能良好,可重复使用。以Cy5荧光素为样品,经实验证明该系统的检出限为17 pmol/L,并能在高达1 200 V/cm的场强下正常运行(高压电源的最高输出电压为1 200 V/cm),最高理论塔板数超过106N/m,表明该系统具有较高电泳效率。将该系统应用于氨基酸和DNA片段的分离分析,以及生物素标记的DNA与链霉亲合素的相互作用的检测,获得了较好的实验结果,说明该系统能够有效地应用于多种生物分析中。 相似文献
17.
毛细管电泳进样技术新进展 总被引:2,自引:0,他引:2
评述了毛细管电泳进样技术新成果。对直接在线进样,二维分离体系中毛细管电泳分离的增样,相关毛细管电泳增样,超微量样品及单个分子的进样,近端进样,双向进样和高温下的进样装置的应用状况作了介绍。 相似文献
18.
19.
毛细管电泳样品电堆积富集过程可以浓缩样品组分,从而提高检测灵敏度,是一种有效的样品富集技术。本文通过合理的简化和假设,把毛细管中电堆积富集过程中所涉及的主要变量根据电势分布方程、缓冲溶液的浓度方程和样品粒子的质量传输方程进行耦合求解,建立了一个一维的数学模型,并应用有限元的方法对该模型进行了求解。计算结果给出了毛细管中缓冲溶液浓度及电场强度的分布随时间变化的过程,以及富集过程中毛细管中的电势分布曲线;得到了样品粒子浓度在电堆积富集过程和富集之后的再次扩散过程中的分布曲线以及正、负样品粒子的分离过程;最后分析了不同缓冲溶液浓度比对样品富集效果的影响。该研究为样品电堆积富集技术的进一步完善提供了一种简单可行的理论研究方法。 相似文献
20.
建立了毛细管区带电泳(CZE)在线富集3种肌肽类活性肽(肌肽、鹅肌肽和高肌肽)的两种简便有效的方法。一种是大体积进样反向压力排除基体富集(LVSRP)技术,即通过流体动力学进样,在不改变电源极性的条件下,利用反向压力排除样品基体,电堆积富集后进行CZE分离;另一种是大体积进样电渗流排除基体富集(LVSEP)技术,即通过流体动力学进样,于运行缓冲液中加入溴化十六烷基三甲基铵(CTAB)动态修饰毛细管表面,通过电渗流排除样品基体,改变电源极性后进行CZE分离。与常规CZE相比,LVSRP技术和LVSEP技术使检测灵敏度提高了40~60倍。对影响两种富集过程的一些因素进行了研究,在最优富集条件下考察本方法的线性范围为0.080~5.0 μmol/L。对3种生物活性肽的检测限(S/N=3)分别为LVSRP 41~58 nmol/L,LVSEP 35~43 nmol/L。 相似文献