首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The separation of Am(III) from a mixture of lanthanides(III) was performed in aqueous medium by nanofiltration combined with a complexation step using a DTPA derivative as selective complexing agent.  相似文献   

2.
5-Chloro-2-methoxybenzoates of La(III), Gd(III) and Lu(III) were synthesized as penta-, mono- and tetrahydrates with a metal to ligand ratio of 1:3 and with white colour typical of La(III), Gd(III) and Lu(III) ions. The complexes were characterized by elemental analysis, IR and FIR spectra, thermogravimetric and diffractometric studies. The carboxylate group appears to be a symmetrical, bidentate, chelating ligand. The complexes are polycrystalline compounds. Their thermal stabilities were studied in air and inert atmospheres. When heated they dehydrate to form anhydrous salts which next in air are decomposed through oxychlorides to the oxides of the respective metals while in inert atmosphere to the mixture of oxides, oxychlorides of lanthanides and carbon. The most thermally stable in air, nitrogen and argon atmospheres is 5-chloro-2-methoxybenzoate of Gd(III). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The preparation, for the first time, of the deprotonated complexes of oxamic acid with La(III), Gd(III), Tb(III), Er(III), Tm(III) and Lu(III) is reported. Analytical results, conductometric measurements, magnetic moments and spectral data (IR and diffuse reflectance spectra) are discussed in terms of possible structural types. The oxamate anion acts as a N, O bidentate non-bridging ligand.  相似文献   

4.
Lanthanide(III) complexes of the general formula [Ln(ACAB)(2)(NO(3))(2)(H(2)O)(2)].NO(3).H(2)O where Ln=La(III), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III) and Y(III), ACAB=3-acetylcoumarin-o-aminobenzoylhydrazone have been isolated and characterised based on elemental analyses, molar conductance, IR, (1)H- and (13)C-NMR, UV, TG/DTA and EPR spectral studies. The ligand behaves in bidentate fashion coordinating through hydrazide >C=O and nitrogen of >C=N. A coordination number of ten is assigned to the complexes. Antibacterial and Antifungal studies indicate an enhancement of activity of the ligand on complexation.  相似文献   

5.
In the objective of optimizing water exchange rate on stable, nine-coordinate, monohydrated Gd(III) poly(amino carboxylate) complexes, we have prepared monopropionate derivatives of DOTA4- (DO3A-Nprop4-) and DTPA5- (DTTA-Nprop5-). A novel ligand, EPTPA-BAA(3-), the bisamylamide derivative of ethylenepropylenetriamine-pentaacetate (EPTPA5-) was also synthesized. A variable temperature 17O NMR study has been performed on their Gd(III) complexes, which, for [Gd(DTTA-Nprop)(H2O)]2- and [Gd(EPTPA-BAA)(H2O)] has been combined with multiple field EPR and NMRD measurements. The water exchange rates, k(ex)(298), are 8.0 x 10(7) s(-1), 6.1 x 10(7) s(-1) and 5.7 x 10(7) s(-1) for [Gd(DTTA-Nprop)(H2O)]2-, [Gd(DO3A-Nprop)(H2O)]- and [Gd(EPTPA-BAA)(H2O)], respectively, all in the narrow optimal range to attain maximum proton relaxivities, provided the other parameters (electronic relaxation and rotation) are also optimized. The substitution of an acetate with a propionate arm in DTPA5- or DOTA4- induces increased steric compression around the water binding site and thus leads to an accelerated water exchange on the Gd(III) complex. The k(ex) values on the propionate complexes are, however, lower than those obtained for [Gd(EPTPA)(H2O)]2- and [Gd(TRITA)(H2O)]- which contain one additional CH(2) unit in the amine backbone as compared to the parent [Gd(DTPA)(H2O)]2- and [Gd(DOTA)(H2O)]-. In addition to their optimal water exchange rate, [Gd(DTTA-Nprop)(H2O)]2- has, and [Gd(DO3A-Nprop)(H2O)]- is expected to have sufficient thermodynamic stability. These properties together make them prime candidates for the development of high relaxivity, macromolecular MRI contrast agents.  相似文献   

6.
Petit L  Adamo C  Maldivi P 《Inorganic chemistry》2006,45(21):8517-8522
Although BTP (2,6-di(1,2,4-triazin-3-yl)pyridine) has been widely evidenced as the most effective nitrogen ligand for the selective complexation of trivalent actinides from lanthanide counterparts, the origin of its selectivity is still an open question. Neither experimental data nor theoretical calculations have been able to rationalize the role of covalency in real experimental BTP complexes. We show herein with DFT calculations on [M(BTP)3]3+ (M = La, U, Cm, Gd) that, even if back-bonding effects are significant in the U-BTP bond, it is the contrast of donation on 6d and 5f Cm(III) orbitals that explains, at least in part, its selective complexation to BTP.  相似文献   

7.
The analysis of 17O NMR transverse relaxation rates and EPR transverse electronic relaxation rates for aqueous solutions of the four DTPA‐like (DTPA = diethylenetriamine‐N,N,N,N″,N″‐pentaacetic acid) complexes, [Gd(DTPA‐PY)(H2O)]? (DTPA‐PY = N′‐(2‐pyridylmethyl)), [Gd(DTPA‐HP)(H2O)2]? (DTPA‐HP = N′‐(2‐hydroxypropyl)), [Gd(DTPA‐H1P)(H2O)2]? (DTPA‐H1P = N′‐(2‐hydroxy‐1‐phenylethyl)) and [Gd(DTPA‐H2P)(H2O)2] (DTPA‐H2P = N′‐(2‐hydroxy‐2‐phenylethyl)), at various temperatures allows us to understand the water exchange dynamics of these four complexes. The water‐exchange lifetime (τM) parameters for [Gd(DTPA‐PY)(H2O)]?, [Gd(DTPA‐HP)(H2O)2]?, [Gd(DTPA‐H1P)(H2O)2]? and [Gd(DTPA‐H2P)(H2O)2] are of 585, 98, 163, and 69 ns, respectively. Compared with [Gd(DTPA)(H2O)]2? (τM = 303 ns), the τM value of [Gd(DTPA‐PY)(H2O)]? is slightly higher, but the other three complexes values are significantly lower than those of [Gd(DTPA)(H2O)]2?. This difference is explained by the fact that the gadolinium(III) complexes of DTPA‐HP, DTPA‐H1P, and DTPA‐H2P have two inner‐sphere waters. The 2H longitudinal relaxation rates of the labeled diamagnetic lanthanum complex allow the calculation of its rotational correlation time (τR). The τR values calculated for DTPA‐PY, DTPA‐HP, DTPA‐H1P, and DTPA‐H2P are of 127, 110, 142 and 147 ps, respectively. These four values are higher than the value of [La(DTPA)]2? (τR = 103 ps), because the rotational correlation time is related to the magnitude of its molecular weight.  相似文献   

8.
The complex of diethylenetriaminepentaacetate (DTPA) with the paramagnetic gadolinium ion [Gd(III)] is a well-known blood pool contrast agent for magnetic resonance imaging (MRI). To obtain MRI pictures from other anatomical structures, for instance from tissues containing cells with phagocytic activity, larger colloidal complexes have to be constructed. Therefore, in view of modifying the physiological behaviour, the DTPA chelate was first hydrophobized by covalently linking it to phosphatidylethanolamine (PE), and the resulting conjugate was then incorporated into nanometre-sized, sonicated phospholipid vesicles. Qualitative information on the affinity of the PE–DTPA derivative for Gd(III) ions was derived from competition experiments using the dye Arsenazo. Furthermore, it was found that only the membranotropic adducts residing in the outer shell of the vesicle bilayer are accessible to the lanthanide ion. The vesicular particulate was also used as a vehicle to transport PE–DTPA into the coating of so-called magnetoliposomes which consist of nanometre-sized iron oxide cores onto which a phospholipid bilayer is strongly chemisorbed. After loading the resulting structures with Gd(III), this new type of magnetoliposome may offer unique potentialities as a novel bi-label MRI contrast medium.  相似文献   

9.
The sparkle/AM1 model for the quantum chemical prediction of coordination polyhedron crystallographic geometries from isolated lanthanide complex ion calculations, defined recently for Eu(III), Gd(III), and Tb(III) (Inorg. Chem. 2005, 44, 3299) is now extended to La(III) and Lu(III). Thus, for each of the metal ions we chose a training set of 15 complexes that possess various representative ligands of high crystallographic quality (R factor < 0.05 Angstroms) and oxygen and/or nitrogen as coordinating atoms. In the validation procedure we used a set of 60 more La(III) coordination compound structures, as well as 15 more Lu(III) coordination compound structures, all of high crystallographic quality. For both the 75 La(III) compounds and the 30 Lu(III) compounds, the Sparkle/AM1 unsigned mean error, for all interatomic distances between the metal ions and the ligand atoms of the first sphere of coordination, is 0.08 Angstroms, thus comparable to the accuracy normally achievable by present day ab initio/ECP calculations, while being hundreds of times faster.  相似文献   

10.
A new amide tripodal ligand, 6-[2-(2-diethylamino-2-oxoethoxy)ethyl]-N,N,12-triethyl-11-oxo-3,9-dioxa-6,12-diazatetradecanamide (4) has been designed and synthesized for the recognition of rare earth ions. Three representative complexes of trivalent lighter (La), middle (Gd), and heavier (Er) rare earth ions with 4 were synthesized and characterized by X-ray crystallography. In the complex, the heptadentate forms a cup-like coordination cavity encapsulating the central ion. Different supramolecular complex dimers are constructed by pi-pi interaction and van der Waals forces in accordance with the lanthanide contraction. The differences of the cavity and dimer structures were investigated further by assessing the separation efficiency of in multitrace solvent extraction of rare earth ions from picrate acid solution and the ligand has the best separation factor for 147Pm(III).  相似文献   

11.
With the objective of tuning the lipophilicity of ligands and maintaining the neutrality and stability of Gd(III) chelate, we designed and synthesized two bis(amide) derivatives of TTDA, TTDA-BMA and TTDA-BBA, and a mono(amide) derivative, TTDA-N-MOBA. The ligand protonation constants and complex stability constants for various metal ions were determined in this study. The identification of the microscopic sites of protonation of the amide ligand by 1H NMR titrations show that the first protonation site occurs on the central nitrogen atom. The values of the stability constant of TTDA-mono and bis(amide) complex are significantly lower than those of TTDA and DTPA, but the selectivity constants of these ligands for Gd(III) over Zn(II) and Cu(II) are slightly higher than those of TTDA and DTPA. On the basis of the water-exchange rate values available for [Gd(TTDA-BMA)(H2O)], [Gd(TTDA-BBA)(H2O)] and [Gd(TTDA-N-MOBA)(H2O)]-, we can state that, in general, the replacement of one carboxylate group by an amide group decreases the water-exchange rate of the gadolinium(III) complexes by a factor of about three to five. The decrease in the exchange rate is explained in terms of a decreased steric crowding and charge effect around the metal ion when carboxylates are replaced by an amide group. In addition, to support the HSA protein binding studies of lipophilic [Gd(TTDA-N-MOBA)(H2O)]- and [Gd(TTDA-BBA)(H2O)] complexes, further protein-complex binding was studied by ultrafiltration and relaxivity studies. The binding constants (KA) of [Gd(TTDA-N-MOBA)(H2O)]- and [Gd(TTDA-BBA)(H2O)] are 8.6 x 10(2) and 1.0 x 10(4) dm3 mol(-1), respectively. The bound relaxivities (r1(b)) are 51.8 and 52 dm3 mmol(-1) s(-1), respectively. The KA value of [Gd(TTDA-BBA)(H2O)] is similar to that of MS-325 and indicates a stronger interaction of [Gd(TTDA-BBA)(H2O)] with HSA.  相似文献   

12.
The use of water-soluble calixarenes: p-sulfonato thiacalixarene (ST), tetra-sulfonatomethylated calix[4]resorcinarene (SR), calix[4]resorcinarene phosphonic acid (PhR) as chelating agents in cloud point extraction (CPE) of La(III), Gd(III) and Yb(III) ions using Triton X-100 as non-ionic surfactant is introduced. The data obtained indicate that both complexation ability and structure of calixarenes govern the extraction efficiency of lanthanides. In particular ST and SR, forming 1:1 lanthanide complexes with similar stability in aqueous media, exhibit different extractability when used as chelating agents in CPE. First synthesized PhR was found to be the most efficient chelating agent exhibiting pH-dependent selectivity within La(III), Gd(III) and Yb(III) in CPE.  相似文献   

13.
The crystal structures of two trisiodide octacoordinated uranium(III) complexes of tris[(2-pyrazinyl)methyl]amine (tpza), which differ only by the ligand occupying the eighth coordination site (thf or MeCN), and of their lanthanum(III) analogues have been determined. In the acetonitrile adducts the M-N(pyrazine) distances are very similar for U(III) and La(III), while the U-N(acetonitrile) distance is 0.05 A shorter than the La-N(acetonitrile) distance. In the [M(tpza)I(3)(thf)] complexes in which the monodentate acetonitrile ligand, a weak pi-acceptor ligand, is replaced by a thf molecule, a sigma-donor only, the mean value of the distance U-N(pyrazine) is 0.05 A shorter than the mean value of the La-N(pyrazine) distance. Since we are comparing isostructural compounds of ions with very similar ionic radii, these differences indicate the presence of a stronger M-N interaction in the U(III) complexes and therefore suggest the presence of a covalent contribution to the U-N bonding. The selectivity of the tpza ligand toward U(III) complexation (with respect to that of La(III)) in the presence of sigma-donor-only ligands has been quantified by the value of K(U(tpza))/K(La(tpza)) measured to be 3.3 +/- 0.5. The analysis of the metal-N-donor ligand bonding was carried out by a quasi-relativistic density functional theory study on small model compounds, of formula I(3)M-L (M = La, Nd, U; L = acetonitrile, pyrazine) and I(3)M-(pyrazine)(3) (M = La, U). The structural data obtained from geometry optimizations on these systems reproduce experimental trends, i.e., a decrease in the M-N distance from La to U, combined with an increase of the C-N distance in the acetonitrile derivatives. A detailed orbital analysis carried out on the resulting optimized complexes did not reveal any orbital interaction between the trivalent lanthanide cations (Ln(3+)) and the N-donor ligands. In contrast, a back-donation electron transfer from 5f U(3+) orbitals to the pi* virtual orbital of the ligand was observed for both acetonitrile and pyrazine. Evaluation of the total bonding energy between the MI(3) and L fragments shows that this orbital interaction leads to a stabilization of the uranium(III) system compared to the lanthanide species.  相似文献   

14.
The synthesis of a novel 5-(4-vinylphenyl)-CyMe4-BTPhen actinide selective ligand using selenium free synthetic procedures is reported. For the first time, we report the electrospinning of this actinide selective ligand into a polystyrene fiber and investigate its selective removal of Am(III) from Eu(III) and Am(III) from Cm(III). At 4?M HNO3, the resulting fibrous solid extractant produced separation factors of SFAm/Eu?≈?57 and a small, but significant separation of SFAm/Cm?≈?2.9.  相似文献   

15.
Cloud point extraction (CPE) was used to extract and separate lanthanum(III) and gadolinium(III) nitrate from an aqueous solution. The methodology used is based on the formation of lanthanide(III)-8-hydroxyquinoline (8-HQ) complexes soluble in a micellar phase of non-ionic surfactant. The lanthanide(III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud point temperature (CPT). The structure of the non-ionic surfactant, and the chelating agent-metal molar ratio are identified as factors determining the extraction efficiency and selectivity. In an aqueous solution containing equimolar concentrations of La(III) and Gd(III), extraction efficiency for Gd(III) can reach 96% with a Gd(III)/La(III) selectivity higher than 30 using Triton X-114. Under those conditions, a Gd(III) decontamination factor of 50 is obtained.  相似文献   

16.
The N-donor complexing ligand 2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine (C5-BPP) was synthesized and screened as an extracting agent selective for trivalent actinide cations over lanthanides. C5-BPP extracts Am(III) from up to 1 mol/L HNO(3) with a separation factor over Eu(III) of approximately 100. Due to its good performance as an extracting agent, the complexation of trivalent actinides and lanthanides with C5-BPP was studied. The solid-state compounds [Ln(C5-BPP)(NO(3))(3)(DMF)] (Ln = Sm(III), Eu(III)) were synthesized, fully characterized, and compared to the solution structure of the Am(III) 1:1 complex [Am(C5-BPP)(NO(3))(3)]. The high stability constant of log β(3) = 14.8 ± 0.4 determined for the Cm(III) 1:3 complex is in line with C5-BPP's high distribution ratios for Am(III) observed in extraction experiments.  相似文献   

17.
《Polyhedron》2002,21(14-15):1393-1396
The interaction of La(III), Gd(III), and Yb(III) with Tris((2,3-dihydroxybenzylamino)ethyl)amine) (TRENCAT) was investigated by means of potentiometric measurements in 0.1 mol dm−3 aqueous solution of sodium perchlorate at 25 °C. The formation of complexes between the partially protonated ligand and lanthanides has been observed and the values of their formation constants are reported.  相似文献   

18.
Six linear oligo‐DTPA‐ester Gd(III) complexes being used for potential MRI contrast agents were synthesized from amino adds and characterized. Their longitudinal relaxation rates were measured. One of them, die phenylalanine derivative, with high relaxivity, was chosen for the acute toxicity and T1,‐weighted imaging test. The results indicated that there was no obvious toxicity for this new oligomeric Gd(III) complex, and it exhibits the highly enhanced MRI signal intensity and the increasing signal duration in the liver tissue compared to Gd‐DTPA.  相似文献   

19.
The kinetics of ligand exchange reactions occurring between the Gd(DTPA), Gd(BOPTA), and Gd(DTPA-BMA) complexes, used as contrast agents in MRI, and the ligand TTHA, have been studied in the pH range 6.5-11.0 by measuring the water proton relaxation rates at 25 °C in 0.15 M NaCl. The rates of the reactions are directly proportional to the concentration of TTHA, indicating that the reactions take place with the direct attack of the H(i)TTHA((6-i)-) (i = 0, 1, 2 and 3) species on the Gd(3+) complexes, through the formation of ternary intermediates. The rates of the exchange reactions of the neutral Gd(DTPA-BMA) increase when the pH is increased from 6.5 to 9, because the less protonated H(i)TTHA((6-i)-) species can more efficiently attack the Gd(3+) complex. The rates of the exchange reactions of [Gd(DTPA)](2-) and [Gd(BOPTA)](2-) also increase from pH 8.5 to 11, but from 6.5 to 8.5 an unexpected decrease was observed in the reaction rates. The decrease has been interpreted by assuming the validity of general acid catalysis. The protons from the H(i)TTHA((6-i)-) species (i = 2 and 3) can be transferred to the coordinated DTPA or BOPTA in the ternary intermediates when the dissociation of the Gd(3+) complexes occurs faster. The kinetic inertness of Gd(DTPA), Gd(BOPTA), and Gd(DTPA-BMA) differs very considerably; the rates of the ligand exchange reactions of Gd(DTPA-BMA), thus the rates of its dissociation, are 2 to 3 orders of magnitude higher than those of Gd(DTPA) and Gd(BOPTA). The rates of the ligand exchange reactions increase with increasing concentration of the endogenous citrate, phosphate, or carbonate ions at a pH of 7.4, but the effect of citrate and phosphate is negligible at their physiological concentrations. The increase in the reaction rates at the physiological concentration of the carbonate ion is significant (20-60%), and the effect is the largest for the Gd(DTPA-BMA) complex.  相似文献   

20.
《Electroanalysis》2003,15(19):1513-1521
The complexation of Cr(III) and Cr(VI) with diethylenetriaminepentaacetic acid (DTPA), the redox behavior of these complexes and their adsorption on the mercury electrode surface were investigated by a combination of electrochemical techniques and UV/vis spectroscopy. A homogenous two‐step reaction was observed when mixing Cr(III), present as hexaquo complex, with DTPA. The first reaction product, the electroactive 1 : 1 complex, turns into an electroinactive form in the second step. The results indicate that the second reaction product is presumably a 1 : 2 Cr(III)/DTPA complex. The electroreduction of the DTPA‐Cr(III) complex to Cr(II) was found to be diffusion rather than adsorption controlled.The Cr(III) ion, generated in‐situ from Cr(VI) at the mercury electrode at about ?50 mV (vs. Ag|AgCl) (3 mol L?1 KCl), was found to form instantly an electroactive and adsorbable complex with DTPA. By means of electrocapillary measurements its surface activity was shown to be 30 times higher than that of the complex built by homogenous reaction of DTPA with the hydrated Cr(III). Both components, DTPA and the in‐situ built complex Cr(III) ion were found to adsorb on the mercury electrode.The effect of nitrate, used as catalytic oxidant in the voltammetric determination method, on the complexation reaction and on the adsorption processes was found to be negligible.The proposed complex structures and an overall reaction scheme are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号