首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P K‐edge X‐ray absorption near‐edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K‐edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K‐edge X‐ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs2CuCl4) and S (Na2S2O3·5H2O), but not neighboring P. This paper presents a review of common P K‐edge XANES energy calibration standards and analysis of PPh4Br as a potential alternative. The P K‐edge XANES region of commercially available PPh4Br revealed a single, highly resolved pre‐edge feature with a maximum at 2146.96 eV. PPh4Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh3 and PPh4+ revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time‐dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre‐edge feature in the P K‐edge XANES spectrum of PPh4Br was assigned to P 1s → P‐C π* transitions, whereas those at higher energy were P 1s → P‐C σ*. Overall, the analysis suggests that PPh4Br is an excellent alternative to other solid energy calibration standards commonly used in P K‐edge XANES experiments.  相似文献   

2.
A series of Ni dithiolene complexes Ni[S2C2(CF3)]2n (n = ?2, ?1, 0) ( 1 , 2 , 3 ) and a 1‐hexene adduct Ni[S2C2(CF3)2]2(C6H12) ( 4 ) have been examined by Ni K‐edge X‐ray absorption near‐edge structure (XANES) and extended X‐ray absorption fine‐structure (EXAFS) spectroscopies. Ni XANES for 1 – 3 reveals clear pre‐edge features and approximately +0.7 eV shift in the Ni K‐edge position for `one‐electron' oxidation. EXAFS simulation shows that the Ni—S bond distances for 1 , 2 and 3 (2.11–2.16 Å) are within the typical values for square planar complexes and decrease by ~0.022 Å for each `one‐electron' oxidation. The changes in Ni K‐edge energy positions and Ni—S distances are consistent with the `non‐innocent' character of the dithiolene ligand. The Ni—C interactions at ~3.0 Å are analyzed and the multiple‐scattering parameters are also determined, leading to a better simulation for the overall EXAFS spectra. The 1‐hexene adduct 4 presents no pre‐edge feature, and its Ni K‐edge position shifts by ?0.8 eV in comparison with its starting dithiolene complex 3 . Consistently, EXAFS also showed that the Ni—S distances in 4 elongate by ~0.046 Å in comparison with 3 . The evidence confirms that the neutral complex is `reduced' upon addition of olefin, presumably by olefin donating the π‐electron density to the LUMO of 3 as suggested by UV/visible spectroscopy in the literature.  相似文献   

3.
In order to assess the usability of X‐ray absorption near‐edge structure (XANES) for studying the structure of BOn‐containing materials, the dependence of theoretical XANES at the B K‐edge on the way the scattering potential is constructed is investigated. Real‐space multiple‐scattering calculations are performed for self‐consistent and non‐self‐consistent potentials and for different ways of dealing with the core hole. It is found that in order to reproduce the principal XANES features it is sufficient to use a non‐self‐consistent potential with a relaxed and screened core hole. Employing theoretical modelling of XANES for studying the structure of boron‐containing glasses is thus possible. The core hole affects the spectrum significantly, especially in the pre‐edge region. In contrast to minerals, B K‐edge XANES of BPO4 can be reproduced only if a self‐consistent potential is employed.  相似文献   

4.
X‐ray absorption near‐edge spectroscopy (XANES) at the Mn K‐edge was used to investigate the environment of Mn in situ within the growth increments of the long‐lived freshwater bivalve species Diplodon chilensis patagonicus. Single XANES spectra and Mn Kα fluorescence distributions were acquired at submillimetre resolution (up to 100 µm × 50 µm), at Mn concentrations below the weight percent range (100–1000 µg g?1) in a high Ca matrix. The position and intensity of the pre‐edge feature in the shell spectrum resembles best that of the Mn(II)‐bearing reference compounds, suggesting that this is the oxidation state of Mn in the bivalve shells. By comparison with the XANES spectra of selected standard compounds, hypotheses about Mn speciation in the shell are also reported. In particular, different factors, such as provenance, ontogenetic age, variable Mn‐concentrations or seasonal shell deposition seem not to influence the speciation of the metal in this bivalve species.  相似文献   

5.
XANES (X‐ray absorption near‐edge structure) spectra of the Ti K‐edges of ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase were measured in the temperature range 20–900 K. Ti atoms for all samples were located in TiO6 octahedral sites. The absorption intensity invariant point (AIIP) was found to be between the pre‐edge and post‐edge. After the AIIP, amplitudes damped due to Debye–Waller factor effects with temperature. Amplitudes in the pre‐edge region increased with temperature normally by thermal vibration. Use of the AIIP peak intensity as a standard point enables a quantitative comparison of the intensity of the pre‐edge peaks in various titanium compounds over a wide temperature range.  相似文献   

6.
Obtaining structural information of uranyl species at an atomic/molecular scale is a critical step to control and predict their physical and chemical properties. To obtain such information, experimental and theoretical L3‐edge X‐ray absorption near‐edge structure (XANES) spectra of uranium were studied systematically for uranyl complexes. It was demonstrated that the bond lengths (R) in the uranyl species and relative energy positions (ΔE) of the XANES were determined as follows: ΔE1 = 168.3/R(U—Oax)2 ? 38.5 (for the axial plane) and ΔE2 = 428.4/R(U—Oeq)2 ? 37.1 (for the equatorial plane). These formulae could be used to directly extract the distances between the uranium absorber and oxygen ligand atoms in the axial and equatorial planes of uranyl ions based on the U L3‐edge XANES experimental data. In addition, the relative weights were estimated for each configuration derived from the water molecule and nitrate ligand based on the obtained average equatorial coordination bond lengths in a series of uranyl nitrate complexes with progressively varied nitrate concentrations. Results obtained from XANES analysis were identical to that from extended X‐ray absorption fine‐structure (EXAFS) analysis. XANES analysis is applicable to ubiquitous uranyl–ligand complexes, such as the uranyl–carbonate complex. Most importantly, the XANES research method could be extended to low‐concentration uranyl systems, as indicated by the results of the uranyl–amidoximate complex (~40 p.p.m. uranium). Quantitative XANES analysis, a reliable and straightforward method, provides a simplified approach applied to the structural chemistry of actinides.  相似文献   

7.
The characteristics of pre‐edge peaks in K‐edge x‐ray absorption near edge structure (XANES) spectra of 3d transition metals were reviewed from viewpoints of the selection rule, coordination number, number of d‐electrons, and symmetry of the coordination sphere. The contribution of the electric dipole and quadrupole transition to the peaks was discussed on the basis of the group theory, polarized spectra, and theoretical calculations. The pre‐edge peak intensity for Td symmetry is larger than those for Oh symmetry for all 3d elements. The intense pre‐edge peak for tetrahedral species of 3d transition metals is not due to 1s–3d transition, but transition to the p component in d–p hybridized orbital. The mixing of metal 4p orbitals with the 3d orbitals depends strongly on the coordination symmetry, and the possibility is predictable by group theory. The transition of 1s electron to d orbitals is electric quadrupole component in any of the symmetries. The d–p hybridization does not occur with regular octahedral symmetry, and the weak pre‐edge peak consists of 1s–3d electric quadrupole transition. The pre‐edge peak intensity for a compound with a tetrahedral center changes as a function of the number of 3d electrons regardless of the kind of element; it is maximized at d0 and gradually decreases to zero at d10. The features of pre‐edge peaks in K‐edge XANES spectra for 4d elements and the L1‐edge for 5d elements are analogous with those for 3d elements, but the pre‐edge peak is broadened due to the wide natural width of the core level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Tc L3‐edge XANES spectra have been collected on powder samples of SrTcO3 (octahedral Tc4+) and NH4TcO4 (tetrahedral Tc7+) immobilized in an epoxy resin. Features in the Tc L3‐edge XANES spectra are compared with the pre‐edge feature of the Tc K‐edge as well as other 4d transition metal L3‐edges. Evidence of crystal field splitting is obvious in the Tc L3‐edge, which is sensitive to the coordination number and oxidation state of the Tc cation. The Tc L3 absorption edge energy difference between SrTcO3 (Tc4+) and NH4TcO4 (Tc7+) shows that the energy shift at the Tc L3‐edge is an effective tool for studying changes in the oxidation states of technetium compounds. The Tc L3‐edge spectra are compared with those obtained from Mo and Ru oxide standards with various oxidation states and coordination environments. Most importantly, fitting the Tc L3‐edge to component peaks can provide direct evidence of crystal field splitting that cannot be obtained from the Tc K‐edge.  相似文献   

9.
To obtain reliable in situ information on the distribution and speciation of Pb in plants with low Pb content, special attention needs to be paid to the synchrotron radiation based micro‐X‐ray fluorescence and micro‐X‐ray absorption near edge structure (μ‐XANES) spectrometry to avoid specious results in the chosen XRF region of interest and speciation linear combination fitting. First, an Arabidopsis thaliana shoot cultured in a Pb solution is analyzed to obtain two‐dimensional Pb distribution graphs, where an overlap of Pb, As, Se, and Br lines in synchrotron radiation based micro‐X‐ray fluorescence spectra is found. To avoid this overlap, (1)As K‐L3 and Pb L3‐M5, (2)As K‐M3, (3)Pb L2‐M4, (4)Se K‐L3, and (5)Br K‐M3 lines should be chosen in the region of interest. The Pb content in the seed coat, root, and stem are 48.2, 17.3, and 5.8 times higher, respectively, than in the leaf, while the Pb content in the seed coat, root, stem, and leaf increased 3458, 1241, 420, and 72 times, respectively, compared with the A. thaliana sample without a Pb solution soak. Second, Pb speciation of the same shoot is analyzed using μ‐XANES. It is important to define a combination fitting range because different possible Pb combinations can emerge using different ranges. Different speciations were found in the root[Pb(Ac)2 and PbSO4], stem[Pb(Ac)2 and Pb3(PO4)2], leaf[Pb(OH)2 and Pb5Cl(PO4)3], and seed coat[Pb3(PO4)2, Pb(OH)2, and PbCO3] between the fitting range of E0 ? 20eV and E0 + 70eV. A more complete Pb XANES database with more references, especially organic Pb compounds, is needed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Self nitrogen, oxygen and air-broadened half-widths of the 115-GHz line of CO have been measured at various temperatures between 293 K (room temperature) and 220 K. The temperature dependence of the broadening parameter CCO-XW is described by a power law CCO-XW (T) = CCO-XW(293 K)(T/293)-n co-x. The values of CCOW (293 K) and nCO-X are presented for each broadening gas X, X - CO, N2 and O2. The usual relation CCO-airW (T) = 0.78CCO−N2W(T) + 0.21CCO−O2 W(T) is found to be valid in the temperature and pressure ranges of the present experiments.  相似文献   

11.
Magnesium K‐edge X‐ray absorption near‐edge structure (XANES) spectra have been investigated to develop a systematic understanding of a suite of Mg‐bearing geological materials such as silicate and carbonate minerals, sediments, rocks and chemical reagents. For the model compounds the Mg XANES was found to vary widely between compounds and to provide a fingerprint for the form of Mg involved in geologic materials. The energy positions and resonance features obtained from these spectra can be used to specify the dominant molecular host site of Mg, thus shedding light on Mg partitioning and isotope fractionation in geologic materials and providing a valuable complement to existing knowledge of Mg geochemistry.  相似文献   

12.
We study the local state probabilities of the vertex models in the face formulation associated with the simple Lie algebras X n =A n, B n, C n, D n. The corner transfer matrix method expresses them in terms of one-dimensional configuration sums. We show that the latter are the string functions of X n (1) modules. We also present similar results for the restricted face models of types B n (1), C n (1), D n (1).  相似文献   

13.
Synchrotron‐based X‐ray absorption near‐edge structure (XANES) spectroscopy is becoming an increasingly used tool for the element speciation in complex samples. For phosphorus (P) almost all XANES measurements have been carried out at the K‐edge. The small number of distinctive features at the P K‐edge makes in some cases the identification of different P forms difficult or impossible. As indicated by a few previous studies, the P L2,3‐edge spectra were richer in spectral features than those of the P K‐edge. However, experimentally consistent spectra of a wide range of reference compounds have not been published so far. In this study a library of spectral features is presented for a number of mineral P, organic P and P‐bearing minerals for fingerprinting identification. Furthermore, the effect of radiation damage is shown for three compounds and measures are proposed to reduce it. The spectra library provided lays a basis for the identification of individual P forms in samples of unknown composition for a variety of scientific areas.  相似文献   

14.
The first comprehensive Li K‐edge XANES study of a varied suite of Li‐bearing minerals is presented. Drastic changes in the bonding environment for lithium are demonstrated and this can be monitored using the position and intensity of the main Li K‐absorption edge. The complex silicates confirm the assignment of the absorption edge to be a convolution of triply degenerate p‐like states as previously proposed for simple lithium compounds. The Li K‐edge position depends on the electronegativity of the element to which it is bound. The intensity of the first peak varies depending on the existence of a 2p electron and can be used to evaluate the degree of ionicity of the bond. The presence of a 2p electron results in a weak first‐peak intensity. The maximum intensity of the absorption edge shifts to lower energy with increasing SiO2 content for the lithium aluminosilicate minerals. The bond length distortion of the lithium aluminosilicates decreases with increasing SiO2 content, thus increased distortion leads to an increase in edge energy which measures lithium's electron affinity.  相似文献   

15.
A theoretical study of the X‐ray absorption near‐edge structure (XANES) spectra at the Mn K‐edge in the La1?xCaxMnO3 series is reported. The relationship between the edge shift, the Ca–La substitution and the distortion of the MnO6 octahedra in these systems has been studied. It is shown that, by correctly considering these effects simultaneously, the experimental XANES data are consistent with the presence of two different Mn local environments in the intermediate La1?xCaxMnO3 compounds. By taking into account the energy shift associated with the modification of the MnO6 distortion as Ca substitutes for La, it is possible to reproduce the XANES spectra of the intermediate‐doped compounds starting from the experimental spectra of the end‐members LaMnO3 and CaMnO3. These results point out the need to re‐examine the conclusions derived in the past from the simple analysis of the Mn K‐edge XANES edge‐shift in these materials. In particular, it is shown that the modification of the Mn K‐edge absorption through the La1?xCaxMnO3 series is well reproduced by considering the simultaneous presence of both distorted and undistorted octahedra and, consequently, that the existence of charge‐ordering phenomena cannot be ruled out from the XANES data.  相似文献   

16.
A series of solvable lattice models with face interaction are introduced on the basis of the affine Lie algebraX n (1) =A n (1) ,B n (1) ,C n (1) ,D n (1) . The local states taken on by the fluctuation variables are the dominant integral weights ofX n (1) of a fixed level. Adjacent local states are subject to a condition related to the vector representation ofX n . The Boltzmann weights are parametrized by elliptic theta functions and solve the star-triangle relation.  相似文献   

17.
To clarify the mechanism of the observed room‐temperature ferromagnetism (RTF), many studies have been focused on dilute magnetic semiconductor systems. Several investigations have demonstrated that oxygen vacancies play a significant role in mediating the RTF behavior so that much effort has been devoted to confirm their presence. In this investigation, X‐ray absorption spectroscopy was combined with ab initio calculations of the electronic structure of Co and Zn in the Zn0.9Co0.1O system before and after annealing, which has been recognized as an effective method of originating oxygen vacancies. A feature at about 20 eV after the rising edge of the Co K‐edge XANES that disappears after annealing has been associated with the presence of an oxygen vacancy located in the second shell surrounding the Co atom. Moreover, Zn K‐edge XANES spectra point out that this oxygen vacancy affects the electronic structure near the Fermi level, in agreement with density functional theory calculations.  相似文献   

18.
Raman spectroscopic technique has been used to characterize a Ru/TiO2 catalyst and to follow in situ their structural changes during the CO selective methanation reaction (S‐MET). For a better comprehension of the catalytic mechanism, the in‐situ Raman study of the catalysts activation (reduction) process, the isolated CO and CO2 methanation reactions and the effect of the composition of the reactive stream (H2O and CO2 presence) have been carried out. Raman spectroscopy evidences that the catalyst is composed by islands of TiO2–RuO2 solid solutions, constituting Ru–TiO2 interphases in the form of RuxTi1 − xO2 rutile type solid solutions. The activation procedure with H2 at 300 °C promotes the reduction of the RuO2–TiO2 islands generating Ruo–Ti3+ centers. The spectroscopic changes are in agreement with the strong increase in chemical reactivity as increasing the carbonaceous intermediates observed. The selective methanation of CO proceeds after their adsorption on these Ruo–Ti3+ active centers and subsequent C―O dissociation throughout the formation of CHx/CnHx/CnHxO/CHx―CO species. These intermediates are transformed into CH4 by a combination of hydrogenation reactions. The formation of carbonaceous species during the methanation of CO and CO2 suggests that the CO presence is required to promote the CO2 methanation. Similar carbonaceous species are detected when the selective CO methanation is carried out with water in the stream. However, the activation of the catalysts occurs at much lower temperatures, and the carbon oxidation is favored by the oxidative effect of water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The two conceptual systems of organic homologous compounds and homo‐rank compounds give insight into the influence of structures on the properties of mono‐substituted alkanes Xi–(CH2)j–H from the transverse (change of repeating unit number j of CH2) and longitudinal (change of functional group Xi) perspectives, respectively. This paper aims to combine the organic homo‐rank compounds approach together with the homologous compounds approach to explore the property change rules of mono‐substituted alkanes involving various substituents. Firstly, based on the concept of organic homologous compounds, the properties of mono‐substituted straight‐chain alkane homologues were linearly correlated to the two‐thirds power of the number of carbon atoms (N2/3) in alkyl, and regression equations such as Q = A + BN2/3 were obtained. The regression coefficients A and B vary with different substituents Xi, so coefficients A and B were employed to characterize the structural information of substituent Xi. The structural features of alkyls (–(CH2)j–H, that is, –CjH2j+1) were described by the polarizability effect index (PEI(R)) and vertex degree–distance index (VDI). Then based on four parameters A, B, PEI(R), and VDI, quantitative structure–property relationship models were built for the boiling points (Bp) and refractive indexes (nD) of each mono‐substituted alkane homo‐rank series, where j = 3–10 and the substituents Xi involve F, Cl, Br, I, NO2, CN, NH2, COOH, CHO, OH, SH, and NC. Good results indicate that the combination of an organic homo‐rank compounds method and a homologous compounds method has exhibited obvious advantages over traditional methods in the quantitative structure–property relationship study of mono‐substituted alkanes concerning various substituents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The electrochemical conversion of CO2 into value‐added products using room temperature ionic liquids as solvent/electrolyte has been proposed as an alternative to minimize the environmental effects of CO2 emissions. A key issue in the design of electrochemical systems for the reduction of CO2 is the in situ identification of intermediate surface species as well as reaction products. Copper electrodes, besides being used as cathodes in the electrochemical reduction of CO2, present surface‐enhanced Raman scattering (SERS) when properly activated. In this sense, the electrochemical reduction of CO2 over a copper electrode in the room temperature ionic liquids 1‐n‐butyl‐3‐methyl imidazolium tetrafluoroborate (BMI.BF4) was investigated by cyclic voltammetry and by in situ SERS. The cyclic voltammetries have shown that the presence of CO2 on the BMI.BF4 anticipates the reduction of BMI+ to the corresponding carbene. Fourier‐transform‐SERS spectra excited at 1064 nm and SERS spectra excited at 632.8 nm have shown vibrational signals from adsorbed CO. These SERS results indicated that CO adsorbs on the copper surface at two different surface sites. The observation of a 2275 cm−1 vibration in the SERS spectra also confirmed the presence of chemically adsorbed CO2. Other products of CO2 reduction in BMI.BF4, besides CO, were identified, including BMI carbene and the BMI‐CO2 adduct. The SERS results also suggest that the presence of a thin film of Cu2O on the copper surface anticipates the reduction of CO2 to CO, an important component of syngas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号