首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 902 毫秒
1.
The temperature dependence of the Raman spectra of Bi2Te3 and Bi0.5Sb1.5Te3 thermoelectric films was investigated. The temperature coefficients of the Eg(2) peak positions were determined as –0.0137 cm–1/°C and –0.0156 cm–1/°C, respectively. The thermal expansion of the crystal caused a linear shift of the Raman peak induced by the temperature change. Based on the linear relation, a reliable and noninvasive micro‐Raman scattering method was shown to measure the thermal conductivity of the thermoelectric films. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The temperature dependence of the dc conductivity and thermoelectric power was determined for five different amorphous chalcogenide Se–Ge–Te films, with Ge?=?3.0–22?at.%, Se?=?0–97?at.% and Te?=?0–97?at.%. The films were prepared by thermal evaporation of GeSe4, GeTe4 and GeSe2Te2 quenched bulk materials. Values of the activation energy calculated from the temperature dependence of both electrical conductivity and thermoelectric power showed a decrease with increasing Ge content in the Se–Ge films as well as with replacement of Te for Se in the Se–Ge–Te films. The results showed an Anderson transition, with the conductivity showing insulating behaviour on the Ge–Se side to metallic behaviour at the binary composition Ge–Te. The radius of localization was obtained for the different compositions investigated. The wave function associated with the charge carriers at the composition Ge3.3Te96.7 is non-localized. A minimum metallic conductivity of 237?±?5?(Ω?cm)?1 was found.  相似文献   

3.
In this paper, n-type lead telluride (PbTe) compounds doped with Bi2Te3 have been successfully prepared by high pressure and high temperature (HPHT) technique. The composition-dependent thermoelectric properties of PbTe doped with Bi2Te3 have been studied at room temperature. The figure-of-merit, Z, for PbTe is very sentivite to the dopants, which could be improved largely although the doped content of Bi2Te3 is very small (<0.08 mol%). In addition, the maximum value reaches to 9.3×10−4 K−1, which is about 20% higher than that of PbTe alloyed with Bi2Te3 sintered at ambient pressure (7.6×10−4 K−1) and several times higher than that of small grain size PbTe containing other dopants. The improved thermoelectric performance in this study may be due to the effect of high pressure and the low lattice thermal conductivity resulting from Bi2Te3 as source of dopants.  相似文献   

4.
A ternary (Bi,Sb)2Te3 bulk nanostructured thermoelectric compound has been prepared by a combination of hydrothermal synthesis and hot pressing. It was found that the grain sizes of the hot-pressed bulk sample vary from tens to hundreds of nanometers, which would be favorable to enhance the scattering of both carriers and phonons, resulting in a high Seebeck coefficient with a satisfactory electrical conductivity and a very low thermal conductivity. The highest figure of merit ZT of the nanostructured (Bi,Sb)2Te3 bulk sample reaches 1.28 at 303 K, which is not only remarkably higher than the zone-melted one, but also higher than commercial state-of-the-art Bi2Te3-based materials. PACS  72.20.Pa; 73.63.Bd; 81.07.Bc  相似文献   

5.
Cu2Ga4Te7 has recently been reported to have a relatively high thermoelectric (TE) figure of merit (ZT). However, the TE properties of Cu2In4Te7, which has the same defect zinc‐blende structure as Cu2Ga4Te7, have been hardly investigated. Here, we demonstrate that Cu2In4Te7 has relatively high ZT values that are similar to those of Cu2Ga4Te7. High‐density polycrystalline bulk samples of Cu2In4Te7 were prepared and their electrical resistivity (?), Seebeck coefficient (S), and thermal conductivity (κ) were measured. Cu2In4Te7 has a maximum ZT of 0.3 at 700 K, with ?, S, and κ values of 62.1 × 10–5 Ω m, 394 μV K–1, and 0.61 W m–1 K–1, respectively. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Ge2Sb2Te5 is a famous phase-change memory material for rewriteable optical storage, which is widely applied in the information storage field. The stable trigonal phase of Ge2Sb2Te5 shows potential as a thermoelectric material as well, due to its tunable electrical transport properties and low lattice thermal conductivity. In this work, the carrier concentration and effective mass of Ge2Sb2Te5 are modulated by substituting Te with Se. Meanwhile, the thermal conductivity reduces from 2.48 W m−1 K−1 for Ge2Sb2Te5 to 1.37 W m−1 K−1 for Ge2Sb2Te3.5Se1.5 at 703 K. Therefore, the thermoelectric figure of merit zT increases from 0.24 for Ge2Sb2Te5 to 0.41 for Ge2Sb2Te3.5Se1.5 at 703 K. This study reveals that Se alloying is an effective way to enhance the thermoelectric properties of Ge2Sb2Te5.  相似文献   

7.
Phase‐change memory (PCM) is regarded as one of the most promising candidates for the next‐generation nonvolatile memory. Its storage medium, phase‐change material, has attracted continuous exploration. Along the traditional GeTe–Sb2Te3 tie line, the binary compound Sb2Te3 is a high‐speed phase‐change material matrix. However, the low crystallization temperature prevents its practical application in PCM. Here, Cr is doped into Sb2Te3, called Cr–Sb2Te3 (CST), to improve the thermal stability. We find that, with increase of the Cr concentration, grains are obviously refined. However, all the CST films exhibit a single hexagonal phase as Sb2Te3 without phase separation. Also, the Cr helps to inhibit oxidation of Sb atoms. For the selected film CST_10.5, the resistance ratio between amorphous and crystalline states is more than two orders of magnitude; the temperature for 10‐year data retention is 120.8 °C, which indicates better thermal stability than GST and pure Sb2Te3. PCM cells based on CST_10.5 present small threshold current/voltage (4 μA/0.67 V). In addition, the cell can be operated by a low SET/RESET voltage pulse (1.1 V/2.4 V) with 50 ns width. Thus, Cr–Sb2Te3 with suitable composition is a promising novel phase‐change material used for PCM with high speed and good thermal stability performances. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
Ternary AgSbTe2 materials are frequently reported to show a promising thermoelectric performance, due to the intrinsically low lattice thermal conductivity and complex valence band structure. However, stoichiometric AgSbTe2 is found to be thermodynamically unstable and would partially decompose into Ag2Te and Sb2Te3 during thermal cycling. Instead, Ag0.366Sb0.558Te is the composition for stabilizing the single-phase according to the Ag2Te-Sb2Te3 phase diagram, while the thermoelectric transport properties have rarely been reported and are the focus of this work. Sn/Sb substitution is found to effectively increase not only the carrier concentration from ≈5 × 1019 cm−3 to ≈4 × 1021 cm−3, but also the density-of-states effective mass, leading to an enhanced Seebeck coefficient along with a decreased carrier mobility. Single parabolic band (SPB) model with acoustic phonon scattering enables a good understanding on the charge transport. The increased carrier concentration effectively suppresses the bipolar effect at high temperatures. As a result, a peak zT of ≈1.3 and an average of ≈0.9 are achieved.  相似文献   

9.
High‐density polycrystalline samples (above 98% of the theoretical density) of Ag8GeTe6 were prepared by solid‐state reactions of Ag2Te, GeTe, and Te, followed by hot‐pressing. The thermoelectric properties were measured at temperatures ranging from room temperature to around 700 K. The thermal conductivity values were extremely low (0.25 Wm–1 K–1 at room temperature), and consequently Ag8GeTe6 exhibited a relatively high thermoelectric figure of merit, ZT = 0.48 at 703 K. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The possibility of increasing the thermoelectric figure of merit for bulk nanostructured materials has been investigated theoretically. The kinetic coefficients of the nanostructured material have been calculated and evaluated under the assumption that the dominant role in the transfer is played by the tunneling of electrons between nanoparticles. The limiting case of the absence of phonon thermal conductivity through barrier layers has been considered. It has been demonstrated using the estimates obtained for materials based on Bi2Te3 that the thermopower in the nanostructured material can be sufficiently high and that, despite the low electrical conductivity, the dimensionless thermoelectric figure of merit can be as large as 3–4 at room temperature.  相似文献   

11.
n-type Mg3Sb2–Mg3Bi2 alloy shows as a potential new thermoelectric material (TE) and has been widely researched recently. The pure phase n-type Mg3·20(Sb0·3Bi0.7)1.99Te0.01 were prepared by adjusting Mg content with the Bi impurity phase being effectively suppressed. Then, Co element was doped into the pure phase and the electrical conductivity of samples were improved. With a high power factor of 20.3 μW cm−1K−2 for Mg3·185Co0·015(Sb0·3Bi0.7)1.99Te0.01 at 525 K. Additionally, it was found that the phonon scattering is enhanced due to the larger atomic mass of Co comparing to Mg and the lattice thermal conductivity is reduced. As a result, a high ZT value of ~ 1.03 at 525 K is achieved for the Mg3·185Co0·015(Sb0·3Bi0.7)1.99Te0.01.  相似文献   

12.
We have obtained the metastable phase of the thermoelectric alloy Bi0.4Sb1.6Te3 with electron type conductivity for the first time using the method of quenching under pressure after treatment at P=4.0 GPa and T=400–850 °C. We have consequently performed comparative studies with the similar phase of Sb2Te3. The polycrystalline X-ray diffraction patterns of these phases are similar to the known monoclinic structure α-As2Te3 (C2/m) with less monoclinic distortion, β ≈ 92°. We have measured the electrical resistivity and the Hall coefficient in the temperature range of T=77?450 K and we have evaluated the Hall mobility and density of charge carriers. The negative Hall coefficient indicates the dominant electron type of carriers at temperatures up to 380 K in the metastable phase of Sb2Te3 and up to 440 K in the metastable state of Bi0.4Sb1.6Te3. Above these temperatures, the p-type conductivity proper to the initial phases dominates.  相似文献   

13.
Thermoelectric power factor of a material significantly relies on its electrical conductivity, thermal conductivity, and Seebeck coefficient. Herein, an attempt has been made to enhance the thermoelectric power factor of In2Te3 thin films by tuning their Te composition and via Se doping. The optimum Se-doping concentration and Te composition enhanced the power factor of pristine In2Te3 films by 14 and 7.4 times, respectively. The modified chemical composition, structural characteristics, and surface morphological features of In2Te3 films are observed to be pivotal in improving their thermoelectric power factor. Overall, this study offers a facile approach to control the thermoelectric power factor of In2Te3 thin films which is significant for their futuristic applications.  相似文献   

14.
Epitaxial c-oriented Bi2Te3 films 1.2 μm in thickness are grown by the hot wall method for a low supersaturation of the vapor phase over the surface of mica substrates. The hexagonal unit cell parameters a = 4.386 Å and c = 30.452 Å of the grown films almost coincide with the corresponding parameters of stoichiometric bulk Bi2Te3 crystals. At T = 100 K, the Hall concentration of electrons in the films is on the order of 8 × 1018 cm?3, while the highest values of the thermoelectric coefficient (α ≈ 280 μV K?1) are observed at temperatures on the order of 260 K. Under impurity conduction conditions, conductivity σ of the films increases upon cooling in inverse proportion to the squared temperature. In the temperature range 100–200 K, thermoelectric power parameter α2σ of Bi2Te3 films has values of 80–90 μW cm?1 K?2.  相似文献   

15.
The transport coefficients and thermoelectric figure of merit ZT for bulk nanostructured materials based on Bi2Te3-Sb2Te3 solid solutions have been investigated theoretically. Similar materials prepared by rapid quenching of the melt with the subsequent grinding and sintering contain amorphous and nanocrystalline regions with different sizes of particles. According to the performed estimations, the thermoelectric figure of merit of the amorphous phase can exceed the value of ZT for the initial solid solution by a factor of 2?C3 primarily due to the significant decrease in the thermal conductivity. The effective transport coefficients of the medium as a whole have also been investigated as a function of the parameters of each phase, and the concentration range of the amorphous phase, which corresponds to the effective values ZT > 1, has been determined.  相似文献   

16.
We have calculated the electronic structure of CsBi4Te6 by means of first-principles self-consistent total-energy calculations within the local-density approximation using the full-potential linear-muffin-tin-orbital method. From our calculated electronic structure we have calculated the frequency dependent dielectric function. Our calculations shows that CsBi4Te6 a semiconductor with a band gap of 0.3 eV. The calculated dielectric function is very anisotropic. Our calculated density of state support the recent experiment of Chung et al. [Science 287 (2000) 1024] that CsBi4Te6 is a high performance thermoelectric material for low temperature applications.  相似文献   

17.
Highly (00l)-oriented pure Bi2Te3 films with in-plane layered grown columnar nanostructure have been fabricated by a simple magnetron co-sputtering method. Compared with ordinary Bi2Te3 film and bulk materials, the electrical conductivity and Seebeck coefficient of such films have been greatly increased simultaneously due to raised carrier mobility and electron scattering parameter, while the thermal conductivity has been decreased due to phonon scattering by grain boundaries between columnar grains and interfaces between each layers. The power factor has reached as large as 33.7 μW cm−1 K−2, and the out-of-plane thermal conductivity is reduced to 0.86 W m−1 K−1. Our results confirm that tailoring nanoscale structures inside thermoelectric films effectively enhances their performances.  相似文献   

18.
《Current Applied Physics》2018,18(12):1513-1522
Bismuth telluride (Bi2Te3) thin films were prepared with various electrolyte temperatures (10°C–70 °C) and concentrations [Bi(NO3)3 and TeO2: 1.25–5.0 mM] in this study. The surface morphologies differed significantly between the experiments in which these two electrodeposition conditions were separately adjusted even though the applied current density was in the same range in both cases. At higher electrolyte temperatures, a dendrite crystal structure appeared on the film surface. However, the surface morphology did not change significantly as the electrolyte concentration increased. The dendrite crystal structure formation in the former case may have been caused by the diffusion lengths of the ions increasing with increasing electrolyte temperature. In such a state, the reactive points primarily occur at the tops of spiked areas, leading to dendrite crystal structure formation. In addition, the in-plane thermoelectric properties of Bi2Te3 thin films were measured at approximately 300 K. The power factor decreased drastically as the electrolyte temperature increased because of the decrease in electrical conductivity due to the dendrite crystal structure. However, the power factor did not strongly depend on the electrolyte concentration. The highest power factor [1.08 μW/(cm·K2)] was obtained at 3.75 mM. Therefore, to produce electrodeposited Bi2Te3 films with improved thermoelectric performances and relatively high deposition rates, the electrolyte temperature should be relatively low (30 °C) and the electrolyte concentration should be set at 3.75 mM.  相似文献   

19.
张贺  骆军  朱航天  刘泉林  梁敬魁  李静波  刘广耀 《中国物理 B》2012,21(10):106101-106101
Polycrystalline p-type Ag 0.9 Sb 1.1 x Mn x Te 2.05(x = 0.05,0.10,and 0.20) compounds have been prepared by a combined process of melt-quenching and spark plasma sintering.The sample composition of Ag 0.9 Sb 1.1 x Mn x Te 2.05 has been specially designed in order to achieve the doping effect by replacing part of Sb with Mn and to present the uniformly dispersed Ag 2 Te phase in the matrix by adding insufficient Te,which is beneficial for optimizing the electrical transport properties and enhancing the phonon scattering effect.All the samples have the NaCl-type structure according to our X-ray powder diffraction analysis.After the treatment of spark plasma sintering,only the sample with x = 0.20 has a small amount of MnTe 2 impurities.The thermal analysis indicates that a tiny amount of Ag 2 Te phase exists in all these samples.The presence of the MnTe 2 impurity with high resistance and high thermal conductivity leads to the deteriorative thermoelectric performance of the sample with x = 0.20 due to the decreased electrical transport properties and the increased thermal conductivity.In contrast,the sample with x = 0.10 exhibits enhanced thermoeletric properties due to the Mn-doping effect.A dimensionless thermoelectric figure of merit of 1.2 is attained for the sample with x = 0.10 at 573 K,showing promising thermoelectric properties in the medium temperature range.  相似文献   

20.
The temperature dependent thermal conductivity of In–Sb–Te thin films has been measured by modulated photothermal radiometry in the 20–550 °C range for samples with different Te content. Significant changes with temperature are observed and ascribed to a sequence of structural transformations on the basis of in‐situ Raman spectra. The data suggest that the as‐deposited material consisting of a mixture of polycrystalline InSb0.8Te0.2and amorphous Te first undergoes a progressive crystallization of the amorphous part, mostly above 300 °C. Further increase in temperature above 460 °C leads, for higher Te content in the alloy, to the formation of crystalline In3SbTe2, intertwined with a less conductive compound, possibly InTe and/or InSb. Upon cooling to room temperature, the initial polycrystalline InSb0.8Te0.2phase is mostly recovered along with other compounds, with a slightly higher thermal conductivity than that of the as deposited material. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号