首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Bismuth telluride samples are compared with respect to the evolution of their thermoelectric material parameters like thermal and electrical conductivity. The Seebeck coefficient is discussed in dependence on the melt spinning fabrication technique. The melt spinner used is only able to produce small thin ribbon shaped specimens, some as thin as 10 μm. This limits melt spinning to mainly production of research specimens for alloys with high critical cooling rate, which are difficult to fabricate with other techniques. Additional parameters are alloying or doping of the base material by comparing the properties as prepared to different annealing conditions. The intrinsic p‐ and n‐doped material was alloyed with up to 0.5% lead telluride by rapidly cooling the bulk material to improve the thermoelectric properties analysed from RT up to about 600 K. A Seebeck coefficient of well above 200 µV/K could be obtained for p‐ and n‐type materials. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The study of the ternary phase diagram Yb–Sb–Te has led to the synthesis of YbSb2Te4 as a pure phase by way of high energy ball milling followed by annealing, whereas typical high temperature powder metallurgy leads to multiphase sample with impurities of the very stable YbTe. The Hall mobility, Seebeck coefficient, electrical resistivity and thermal conductivity of the layered compound YbSb2Te4 were measured in the range of 20–550 °C. The thermoelectric figure of merit peaks at 525 K and reaches 0.5. Of particular interest is the very low lattice thermal conductivity (as low as a glass) which makes YbSb2Te4 and related compounds promising thermoelectric materials. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Spark Plasma Sintering (SPS) is used for the fabrication of wafers of n‐ and p‐type thermoelectric V2VI3 materials. The SPS process did not change the overall chemical composition. X‐ray diffraction analysis and the electron backscattered selected area diffraction prove the preferential orientation after the SPS procedure expecting anisotropic thermoelectric prop‐ erties. The mechanical properties of the SPS material are enormously enhanced, so that the fabrication of thin wafers with only 100 µm thickness suitable for the development of Peltier devices with high cooling power density will be possible. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We report on the synthesis and low temperature transport of Mg2Ge1–y Sby with 0 ≤ y ≤ 0.33. In these materials Sb substitutes for Ge in the antifluorite structure. Electrical and thermal transport measurements indicate that as the Sb content increases, vacancies are formed on the Mg sites thereby contributing to variations in the transport properties. With increasing Sb content both the absolute Seebeck coefficient and electrical resistivity first decrease and then increase, while the thermal conductivity decreases monotonically. Hall measurements indicate this tendency is associated with vacancy formation at higher Sb concentrations. The lattice thermal conductivity is fitted using the Debye approximation in order to elucidate the effect of alloying. We discuss these results in terms of potential for thermoelectric applications. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We demonstrate the controlled preparation of Er‐ and Eu‐doped GaP‐oxide porous composites. The fabrication procedure entails the use of porous semiconductor templates and the impregnation of rare earth ions from a rare earth salt solution in alcohol and thermal treatment. The composites exhibit strong green and red emission that comes from finely dispersed ErPO4 and EuPO4 oxide submicron phases in the composite. These materials may prove useful in future generations of optoelectronic and photonic devices. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The iron‐oxypnictide compounds, recently reported as a new class of superconductors when appropriately doped, exhibit large Seebeck coefficients, of the order of –100 µV/K, while keeping good electrical conductivity. Their power factor shows a peak at low temperatures, suggesting possible applications of these materials in thermoelectric cooling modules in the liquid nitrogen temperature range. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号