首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fabrication and testing of a prototype transmission‐mode pixelated diamond X‐ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X‐ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic‐grade chemical vapor deposition single‐crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ~1 kHz, which leads to an image sampling rate of ~30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10?2 to 90 W mm?2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software‐controlled single channel mode providing accurate flux measurement (fluctuation within 1%).  相似文献   

3.
In this paper results are presented from fluorescence‐yield X‐ray absorption fine‐structure spectroscopy measurements with a new seven‐cell silicon drift detector (SDD) module. The complete module, including an integrated circuit for the detector readout, was developed and realised at DESY utilizing a monolithic seven‐cell SDD. The new detector module is optimized for applications like XAFS which require an energy resolution of ~250–300 eV (FWHM Mn Kα) at high count rates. Measurements during the commissioning phase proved the excellent performance for this type of application.  相似文献   

4.
The developed curved image plate (CIP) is a one‐dimensional detector which simultaneously records high‐resolution X‐ray diffraction (XRD) patterns over a 38.7° 2θ range. In addition, an on‐site reader enables rapid extraction, transfer and storage of X‐ray intensity information in ≤30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X‐ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X‐ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high‐temperature XRD.  相似文献   

5.
Crystal centering is a key step in macromolecular X‐ray crystallography experiments. A new method using image‐processing and machine‐vision techniques allows the centering of small crystals in the X‐ray beam. This method positions crystals even when the loop is initially out of the camera's field of view and adapts to the difficulty of the experiment. The process has been tested on many diverse crystals with a 93% success rate when compared with manual centering.  相似文献   

6.
The application of a two‐dimensional photon‐counting detector based on a micro‐pixel gas chamber (µ‐PIC) to high‐resolution small‐angle X‐ray scattering (SAXS), and its performance, are reported. The µ‐PIC is a micro‐pattern gaseous detector fabricated by printed circuit board technology. This article describes the performance of the µ‐PIC in SAXS experiments at SPring‐8. A dynamic range of >105 was obtained for X‐ray scattering from a polystyrene sphere solution. A maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks were observed in the high‐angle region in one accumulation of photons.  相似文献   

7.
AR‐NW12A is an in‐vacuum undulator beamline optimized for high‐throughput macromolecular crystallography experiments as one of the five macromolecular crystallography (MX) beamlines at the Photon Factory. This report provides details of the beamline design, covering its optical specifications, hardware set‐up, control software, and the latest developments for MX experiments. The experimental environment presents state‐of‐the‐art instrumentation for high‐throughput projects with a high‐precision goniometer with an adaptable goniometer head, and a UV‐light sample visualization system. Combined with an efficient automounting robot modified from the SSRL SAM system, a remote control system enables fully automated and remote‐access X‐ray diffraction experiments.  相似文献   

8.
BioCARS, a NIH‐supported national user facility for macromolecular time‐resolved X‐ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator‐based beamline optimized for single‐shot laser‐pump X‐ray‐probe measurements with time resolution as short as 100 ps. The source consists of two in‐line undulators with periods of 23 and 27 mm that together provide high‐flux pink‐beam capability at 12 keV as well as first‐harmonic coverage from 6.8 to 19 keV. A high‐heat‐load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X‐ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high‐speed chopper isolates single X‐ray pulses at 1 kHz in both hybrid and 24‐bunch modes of the APS storage ring. In hybrid mode each isolated X‐ray pulse delivers up to ~4 × 1010 photons to the sample, thereby achieving a time‐averaged flux approaching that of fourth‐generation X‐FEL sources. A new high‐power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage‐ring RF clock with long‐term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.  相似文献   

9.
The first application of a pnCCD detector for X‐ray scattering experiments using white synchrotron radiation at BESSY II is presented. A Cd arachidate multilayer was investigated in reflection geometry within the energy range 7 keV < E < 35 keV. At fixed angle of incidence the two‐dimensional diffraction pattern containing several multilayer Bragg peaks and respective diffuse‐resonant Bragg sheets were observed. Since every pixel of the detector is able to determine the energy of every incoming photon with a resolution ΔE/E? 10?2, a three‐dimensional dataset is finally obtained. In order to achieve this energy resolution the detector was operated in the so‐called single‐photon‐counting mode. A full dataset was evaluated taking into account all photons recorded within 105 detector frames at a readout rate of 200 Hz. By representing the data in reciprocal‐space coordinates, it becomes obvious that this experiment with the pnCCD detector provides the same information as that obtained by combining a large number of monochromatic scattering experiments using conventional area detectors.  相似文献   

10.
X‐ray detectors that combine two‐dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time‐gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter‐scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time‐ and location‐tagged events at rates greater than 107 events per cm2. Time‐gating can be used for improved dynamic range.  相似文献   

11.
The first X‐ray photon correlation spectroscopy experiments using the fast single‐photon‐counting detector PILATUS (Paul Scherrer Institut, Switzerland) have been performed. The short readout time of this detector permits access to intensity autocorrelation functions describing dynamics in the millisecond range that are difficult to access with charge‐coupled device detectors with typical readout times of several seconds. Showing no readout noise the PILATUS detector enables measurements of samples that either display fast dynamics or possess only low scattering power with an unprecedented signal‐to‐noise ratio.  相似文献   

12.
The development of a sagittally focusing double‐multilayer monochromator is reported, which produces a spatially extended wide‐bandpass X‐ray beam from an intense synchrotron bending‐magnet source at the Advanced Photon Source, for ultrafast X‐ray radiography and tomography applications. This monochromator consists of two W/B4C multilayers with a 25 Å period coated on Si single‐crystal substrates. The second multilayer is mounted on a sagittally focusing bender, which can dynamically change the bending radius of the multilayer in order to condense and focus the beam to various points along the beamline. With this new apparatus, it becomes possible to adjust the X‐ray beam size to best match the area detector size and the object size to facilitate more efficient data collection using ultrafast X‐ray radiography and tomography.  相似文献   

13.
The high brilliance of third‐generation synchrotron sources increases the demand for faster detectors to utilize the available flux. The Maia detector is an advanced imaging scheme for energy‐dispersive detection realising dwell times per image‐pixel as low as 50 µs and count rates higher than 10 × 106 s?1. In this article the integration of such a Maia detector in the Microprobe setup of beamline P06 at the storage ring PETRA III at the Deutsches Elektronen‐Synchrotron (DESY) in Hamburg, Germany, is described. The analytical performance of the complete system in terms of rate‐dependent energy resolution, scanning‐speed‐dependent spatial resolution and lower limits of detection is characterized. The potential of the Maia‐based setup is demonstrated by key applications from materials science and chemistry, as well as environmental science with geological applications and biological questions that have been investigated at the P06 beamline.  相似文献   

14.
X‐ray photon correlation spectroscopy (XPCS) provides an opportunity to study the dynamics of systems by measuring the temporal fluctuations in a far‐field diffraction pattern. A two‐dimensional detector system has been developed to investigate fluctuations in the frequency range of several Hz to kHz. The X‐ray detector system consists of a thin 100 µm scintillation crystal coupled to a Geiger‐mode avalanche photodiode array. In this article the elements of the system are detailed and the detector for XPCS measurements is demonstrated.  相似文献   

15.
Scanning X‐ray microprobes are unique tools for the nanoscale investigation of specimens from the life, environmental, materials and other fields of sciences. Typically they utilize absorption and fluorescence as contrast mechanisms. Phase contrast is a complementary technique that can provide strong contrast with reduced radiation dose for weakly absorbing structures in the multi‐keV range. In this paper the development of a segmented charge‐integrating silicon detector which provides simultaneous absorption and differential phase contrast is reported. The detector can be used together with a fluorescence detector for the simultaneous acquisition of transmission and fluorescence data. It can be used over a wide range of photon energies, photon rates and exposure times at third‐generation synchrotron radiation sources, and is currently operating at two beamlines at the Advanced Photon Source. Images obtained at around 2 keV and 10 keV demonstrate the superiority of phase contrast over absorption for specimens composed of light elements.  相似文献   

16.
17.
Precise monitoring of the incoming photon flux is crucial for many experiments using synchrotron radiation. For photon energies above a few keV, thin semiconductor photodiodes can be operated in transmission for this purpose. Diamond is a particularly attractive material as a result of its low absorption. The responsivity of a state‐of‐the art diamond quadrant transmission detector has been determined, with relative uncertainties below 1% by direct calibration against an electrical substitution radiometer. From these data and the measured transmittance, the thickness of the involved layers as well as the mean electron–hole pair creation energy were determined, the latter with an unprecedented relative uncertainty of 1%. The linearity and X‐ray scattering properties of the device are also described.  相似文献   

18.
The energy‐dependent scintillation intensity of Eu‐doped fluorozirconate glass‐ceramic X‐ray detectors has been investigated in the energy range from 10 to 40 keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu‐doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X‐ray excited scintillation is mainly due to the 5d–4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X‐ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X‐ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4 keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K‐edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics.  相似文献   

19.
A new method of phase‐shifting digital holography is demonstrated in the hard X‐ray region. An in‐line‐type phase‐shifting holography setup was installed in a 6.80 keV hard X‐ray synchrotron beamline. By placing a phase plate consisting of a hole and a band at the focusing point of a Fresnel lens, the relative phase of the reference and objective beams could be successfully shifted for use with a three‐step phase‐shift algorithm. The system was verified by measuring the shape of a gold test pattern and a silica sphere.  相似文献   

20.
A systematic study is presented in which multilayers of different composition (W/Si, Mo/Si, Pd/B4C), periodicity (from 2.5 to 5.5 nm) and number of layers have been characterized. In particular, the intrinsic quality (roughness and reflectivity) as well as the performance (homogeneity and coherence of the outgoing beam) as a monochromator for synchrotron radiation hard X‐ray micro‐imaging are investigated. The results indicate that the material composition is the dominating factor for the performance. By helping scientists and engineers specify the design parameters of multilayer monochromators, these results can contribute to a better exploitation of the advantages of multilayer monochromators over crystal‐based devices; i.e. larger spectral bandwidth and high photon flux density, which are particularly useful for synchrotron‐based micro‐radiography and ‐tomography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号