首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer–fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer–fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8–10 mA/cm2. Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer–fullerene bulk heterojunction solar cell operation. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
CuGaSe2 (CGS) thin‐film solar cells were prepared with an in‐line co‐evaporation process and the established buffer combination CdS/i‐ZnO was replaced by ZnS/(Zn,Mg)O. We obtained functional CGS solar cells with a strong gain in the short‐circuit current density as compared to the CdS/i‐ZnO buffer reference cells. The enhanced current density is a result of improved transmission in the wavelength region between 330 nm and 550 nm of the ZnS/(Zn,Mg)O buffer combination as compared to CdS/i‐ZnO. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Microcrystalline silicon thin film pin solar cells with a highly crystallized intrinsic μc‐Si:F:H absorber were prepared by RF‐plasma enhanced chemical vapour deposition using SiF4 as the gas precursor. The cells were produced with a vacuum break between the doped layer and intrinsic layer depositions, and the effect of different subsequent interface treatment processes was studied. The use of an intrinsic μc‐Si:H p/i buffer layer before the first air break increased the short circuit current density from 22.3 mA/cm2 to 24.7 mA/cm2. However, the use of a hydrogen‐plasma treatment after both air breaks without an interface buffer layer improved both the open circuit voltage and the fill factor. Although the material used for the absorber layer showed a very high crystalline fraction and thus an increased spectral response at long wavelengths, an open‐circuit voltage (VOC) of 0.523 V was nevertheless observed. Such a value of VOC is higher than is typically obtained in devices that employ a highly crystallized absorber as reported in the literature (see abstract figure). Using a hydrogen‐plasma treatment, a single junction μc‐Si:F:H pin solar cell with an efficiency of 8.3% was achieved.

  相似文献   


4.
The inversion layer resistance is very important for metal-insulator-semiconductor inversion layer (MIS/IL) solar cells, and usually it is the main part of the series resistance. It is found that the inversion layer resistance and the junction depth are determined by the operating voltage for an MIS/IL solar cell. On the basis of MIS theory, a general relationship between the operating voltage and the inversion layer resistance (and the junction depth) has been investigated. Practical computations have been done for MIS/IL solar cells with a silicon nitride insulator layer. It is found that the inversion layer resistance has a minimum value for operating voltage near 0.4 V, and the junction depth decreases monotonically with the increase of the operating voltage.  相似文献   

5.
In this letter we report the result of an a‐Si:H/nc‐Si:H tandem thin film silicon solar mini‐module fabricated on plastic foil containing intrinsic silicon layers made by hot‐wire CVD (efficiency 7.4%, monolithically series‐connected, aperture area 25 cm2). We used the Helianthos cell transfer process. The cells were first deposited on a temporary aluminum foil carrier, which allows the use of the optimal processing temperatures, and then transferred to a plastic foil. This letter reports the characteristics of the flexible solar cells obtained in this manner, and compares the results with those obtained on reference glass substrates. The research focus for implementation of the hot‐wire CVD technique for the roll‐to‐roll process is also discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The local absorber layer thickness (dlocal) of solar cells with extremely thin absorber was changed between 10 nm and 70 nm. As a model system, ZnO nanorod arrays (electron conductor) with fixed internal surface area coated with In2S3 (absorber) and impregnated with CuSCN (transparent hole conductor) were applied. The performance of the small area solar cells depended critically on dlocal. The highest short circuit current density was reached for the lowest dlocal. In contrast, the highest open circuit voltage was obtained for the highest dlocal. A maximum energy conversion efficiency of 3.4% at AM1.5 was achieved. Limiting factors are discussed.(© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Polymer photovoltaic cells (PVC) are intensely investigated because of their potential advantages over Si-based PVCs. Their present drawbacks are low conversion efficiency, limited exciton diffusion length, poor hole carriers transport and short lifetime. The highest conversion efficiency achieved so far in spin-coated polymer blends is close to 5%. Recently, efficiency growing has been demonstrated in multilayer architectures involving a donor/acceptor bulk heterojunction. Alternatively, a nanomaterial has been added to the polymer active layer to facilitate excitons dissociation and carriers transport through the polymer matrix. In this work we investigate both these approaches, first embedding single wall Carbon Nanotubes (SWCNT) in the polymeric matrix to improve the electrical transport and second studying the optical absorption of different polymer thin films to optimize the spectral response of the donor/acceptor heterojunction.  相似文献   

8.
New support is given for one of the controversial models about the electronic consequences of the CdCl2 treatment of a thin-film CdTe solar cell: the assumption that deep acceptor states are introduced in the bulk of the CdTe layer as a result of the CdCl2 treatment. A detailed study of the doping profile using capacitance–voltage (C-V) measurements is performed as a first step. The above assumption is numerically simulated with our simulation programme SCAPS. In this way, anomalous features of the C-V measurements are fully explained, and further correspondence between calculated and measurable quantities is found. Received: 1 March 1999 / Accepted: 28 March 1999 / Published online: 1 July 1999  相似文献   

9.
We report the use of conducting precision fabrics as transparent and flexible electrode for organic semiconductor‐based thin film devices. Precision fabrics have well‐defined mesh openings, excellent flexibility and are fabricated by high‐throughput roll‐to‐roll manufacturing. Optimized fabrics reached light transmittance over 95% throughout the visible and near infrared spectra. A significant part of the transmitted light is scattered, which is particularly advantageous for solar cell applications. Surface resistivity is as low as ~3 Ohms/square, which decreases Ohmic losses when scaling up to large area devices. We demonstrate that solar cells fabricated onto these electrodes show very similar characteristics to those prepared on ITO. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this letter quantum chemical calculations are performed on fullerene derivatives with varying reduction potentials, successfully used as electron acceptor in bulk heterojunction solar cells with the aim to investigate the energy levels of the frontier orbitals. We have successfully correlated the theoretical lowest unoccupied molecular orbital (LUMO) levels of different fullerenes with the open circuit voltage of the photovoltaic device based on the polymer–fullerene blend. We have also proposed a new fullerene silirane derivative with a raised LUMO level useful to increase the open circuit voltage of a polymer solar cell. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A theory is presented for propagation of electromagnetic waves through one-dimensional magnetic Bragg structures (magneto-photonic crystals). Within the self-consistent Green-function technique the transfer matrices and magneto-optical characteristics are derived in terms of circularly polarized waves propagating in periodical arrays of alternating magnetic and dielectric layers. For finite-thickness magneto-photonic crystals, the Faraday rotation and other magneto-optical responses are demonstrated to change considerably in the spectral range of stop-bands, the magnetic modulation of the in-plane reflection intensity being essentially enhanced.  相似文献   

12.
We report the quasi-persistent photocurrent in the MEH-PPV conjugated polymer, induced by UV-irradiation in air. It is attributed to the irradiation-induced defects, which also act to accelerate its decay.  相似文献   

13.
The light transmittance of metal film with periodic slits and grooves structure has been investigated. It was demonstrated that the grooves significantly affect the transmittance of the metal film. The structure excavating two grooves symmetric to the central slit in a cell of a period grating displays a dent in the transmission spectrum comparing with the structure with only one slit in the cell. Deepening the grooves moves the dents to the longer wavelengths in the transmission spectrum. An analytical equation is also provided to approximately locate the dents. The grooves in the grating filter supply the advantage of removing the needless transmission of certain frequency.  相似文献   

14.
In the effort to increase the stable efficiency of thin film silicon micromorph solar cells, a silicon oxide based intermediate reflector (SOIR) layer is deposited in situ between the component cells of the tandem device. The effectiveness of the SOIR layer in increasing the photo‐carrier generation in the a‐Si:H top absorber is compared for p–i–n devices deposited on different rough, highly transparent, front ZnO layers. High haze and low doping level for the front ZnO strongly enhance the current density (Jsc) in the μc‐Si:H bottom cell whereas Jsc in the top cell is influenced by the angular distribution of the transmitted light and by the reflectivity of the SOIR related to different surface roughness. A total Jsc of 26.8 mA/cm2 and an initial conversion efficiency of 12.6% are achieved for 1.2 cm2 cells with top and bottom cell thicknesses of 300 nm and 3 μm, and without any anti‐reflective coating on the glass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Heat treatment with high-pressure H2O vapor was applied to improve interface properties of SiO2/Si and passivate the silicon surface. Heat treatment at 180–420 °C with high-pressure H2O vapor changed SiOx films, 150 nm thick formed at room temperature by thermal evaporation in vacuum, into SiO2 films with a Si-O-Si bonding network similar to that of thermally grown SiO2 films. Heat treatment at 130 °C with 2.8×105 Pa H2O for 3 h reduced the recombination velocity for the electron minority carriers from 405 cm/s (as-fabricated 150-nm-thick SiOx/Si) to 5 cm/s. Field-effect passivation was demonstrated by an additional deposition of defective SiOx films on the SiO2 films formed by heat treatment at 340 °C with high-pressure H2O vapor. The SiOx deposition reduced the recombination velocity from 100 cm/s to 48 cm/s. Received: 1 March 1999 / Accepted: 28 March 1999 / Published online: 24 June 1999  相似文献   

16.
For the generation of particular optical properties the melt of a commercially manufactured glass is doped with copper compounds. The glass obtained is opaque black at the usual thickness and looks dark red after making it into bulbs of incandescent lamps. It is generally assumed that copper particles cause this colouring. A proof in a spectrophotometric way fails due to the very high absorbance even for a sample thickness below 20 μm. It will be shown that in these cases spectroscopic ellipsometry is a suitable method of investigation. The pseudo-optical constants of this material were determined as a function of wavelength in the range from 350 nm to 700 nm by ellipsometric measurements. They can be reproduced very well by those of a model that consists of a roughness layer situated on a substrate of glass containing spherical copper particles with a Gaussian size distribution with =6.5 nm and σ=0.24 and a volume concentration of 2.4×10-3. For this modelling the dielectric function of the roughness layer was approximated by Bruggeman effective-medium theory and that of the copper-containing glass substrate was calculated on the basis of the theory of Gans and Happel. The results were verified by transmission electron microscope investigations. Received: 1 July 2001 / Published online: 10 October 2001  相似文献   

17.
18.
Jinsheng Huang  Libin 《Physics letters. A》2008,372(23):4323-4326
Dipole-allowed optical absorption in a parabolic quantum dot with two electrons are studied by using the exact diagonalization techniques and the compact density-matrix approach. Numerical results are presented for typical GaAs parabolic quantum dots. The results show that the total optical absorption coefficient of two electrons in quantum dot is about five times smaller than that of one electron in quantum dot.  相似文献   

19.
The electronic structure and radiative lifetimes of Si(001) quantum films terminated by SiO4 tetrahedra, which simulate Si/SiO2 quantum wells (QWs), are calculated by the extended Hückel-type non-orthogonal tight-binding method. It is found that calculated band-gap widenings and radiative lifetimes account for band-edge shifts and photoluminescence (PL) peak shifts and lifetimes measured in amorphous-Si/SiO2 QWs, suggesting that quantum confinement effects on the extended band-edge states in the amorphous-Si layer are responsible for the observed results. However, it is shown that band-edge shifts and PL energies and lifetimes observed in crystalline-Si/SiO2 QWs cannot be reproduced properly by the interface model proposed in this study, implying that further studies are needed on the atomic structure of the crystalline-Si/SiO2 interface.  相似文献   

20.
An optical torque is induced by incidence of the linearly polarized light and propagating through an anisotropic crystal, which results in self-modulation of the ordinary and the extraordinary waves and causes an energy splitting of the resultant left-, and the right-handed elliptically polarized waves. The optical torque originates from the angular momentum of light, which causes the correlation of the left- and the right-handed circularly polarized waves in the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号