首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intrinsic and phosphorous (P)-doped hydrogenated amorphous silicon thin films were crystallized by laser annealing. The structural properties during crystallization process can be investigated. Observed redshifts of the Si Raman transverse optical phonon peak indicate tensile stress present in the films and become intense with the effect of doping, which can be relieved in P-doped films by introducing buffer layer structures. Based on experimental results, the established correlation between the stress and crystalline fraction (XC) suggests that the relatively high stress can limit the increase in XC and the highest crystalline fraction is obtained by a considerable stress release. At high laser energy density of 1250 mJ/cm2, the poorer crystalline quality and disordered structure of the film originating from the irradiation damage and defects lead to the low electron mobility.  相似文献   

2.
Raman spectra, atomic force microscope (AFM) images, hardness (H) and Young's modulus (E) measurements were carried out in order to characterize carbon thin films obtained from a C60 ion beam on silicon substrates at different deposition energies (from 100 up to 500 eV). The mechanical properties were studied via the nanoindentation technique. It has been observed by Raman spectroscopy and AFM that the microstructure presents significant changes for films deposited at energies close to 300 eV. However, these remarkable changes have not been noticeable on the mechanical properties: apparently H and E increase with higher deposition energy up to ∼11 and ∼116 GPa, respectively. These values are underestimated if the influence of the film roughness is not taken into account.  相似文献   

3.
In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate-ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV-vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C60 after surface functionalization.  相似文献   

4.
Nano-sized oxide structures resulted from localized electrochemical oxidation induced by a negatively biased atomic force microscopy (AFM) tip operated with the non-contact mode were fabricated on p-GaAs(1 0 0) surface. The geometrical characteristics of the oxide patterns and their dependences on various fabrication parameters, e.g., the anodization time, the biased voltages, the tip scanning rates, as well as the formation mechanism and relevant growth kinetics are investigated. Results indicate that the height of the protruded oxide dots grow exponentially as a function of time in the initial stage of oxidation and soon reaches a maximum height depending linearly with the anodized voltages, in according with the behaviors predicted by space charge limited local oxidation mechanism. In addition, selective micro-Auger analysis of the anodized region reveals the formation of Ga(As)Ox, indicating the prominent role played by the field-induced nanometer-size water meniscus in producing the nanometer-scale oxide dots and bumps on p-GaAs(1 0 0) surface.  相似文献   

5.
Cross‐sectional samples of CuIn1–x Gax Se2 layers grown by a three‐stage process were studied by means of electron backscatter diffraction (EBSD) in completed thin‐film solar cells. The microstructural analysis reveals a dependence of the average grain size on the gallium content x = [Ga]/([Ga] + [In]), with a maximum at x = 0.23. This result is correlated with structural measurements on CuIn1–x Gax Se2 powder samples showing that the ratio of the lattice constants c /a is equal to 2 for about the same x value. The pseudocubic crystal structure at about x = 0.23 may lead to reduced strain in the growing CuIn1–x Gax Se2 layer and therefore larger average grain sizes. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Asymmetric PS-b-PEO block copolymer exhibits well-ordered cylindrical morphology with nanoscale domain sizes due to microphase separation. Since the PS and PEO blocks have large stiffness difference, this polymer system represents an ideal candidate for studies of the phase contrast behavior in atomic force microscopy (AFM). In this paper, PS-b-PEO films are investigated under different scanning conditions using two different atomic force microscopes. It is found that the phase contrast of the film can be well described in terms of energy dissipation, though the exact phase image may also depend on the scanning parameters (e.g., the repulsive versus attractive regimes) as well as the settings of the microscope. Height variation on sample surface does not have significant effect on phase contrast. However, in order to obtain true topography of the polymer film, care has to be taken to avoid damage to the sample by AFM. Under certain conditions, true topography can be obtained during the first scan in spite of the surface-damaging forces are used.  相似文献   

7.
Silver selenide thin films were grown on silicon substrates by the solid-state reaction of sequentially deposited Se and Ag films of suitable thickness. Transmission electron microscopy and particle-induced X-ray emission studies of the as-deposited films showed the formation of single phase polycrystalline silver selenide from the reaction of Ag and Se films. Atomic force microscopy images of the as-deposited and films annealed at different temperatures in argon showed the film morphology to evolve into an agglomerated state with annealing temperature. The results indicate that when annealed above 473 K, silver selenide films on silicon become unstable and agglomerate through holes generated at grain boundaries.  相似文献   

8.
In the last few years, intensive research activity has been focused on the development of suitable synthesis methods for high-permittivity materials, used for the realization of next-generation microdevices able to fulfil the previsions of the Technology Roadmap of Semiconductors. The use of high-permittivity materials can overcome the difficulties concerning the production of SiO2-based ultra-thin dielectrics, such as the generation of pinholes and the non-uniformity of the film, which may result in a malfunction in high-density systems. Recently, zirconium titanate thin films were discovered to have very interesting dielectric properties, which suggests a use for them in microwave integrated systems, such as receivers or DRAMs, since they are monophasic, have little dissipation and show a good thermal stability and a high value for the dielectric constant, independent of frequency in the range from kilohertz to a few gigahertz. Real application is possible only in strict connection with the development of a suitable preparation method which allows production with controlled and reproducible characteristics. In this work, the synthesis and characterization of ZrxTi1-xO4 (ZT) thin films grown via MO-CVD is described, studying the influence of growth parameters on their structural, chemical and physical properties. Received: 17 June 2002 / Accepted: 24 June 2002 / Published online: 4 November 2002 RID="*" ID="*"Corresponding author. Fax: +39-06/9067-2445, E-mail: Pad@mlib.cnr.it  相似文献   

9.
Mono-sized single-wall carbon nanotubes were formed in one-dimensional channels of AlPO4-5 single crystal (AFI) by pyrolysis of tripropylamine (TPA). Raman spectra have been measured for the TPA-AFI crystals thermally processed at different conditions. TPA molecules are carbonized at 400 °C, and carbon nanotubes were formed at 500 °C or above. The radial-breathing mode, which is special for carbon nanotube geometry, was observed. Three Raman-active modes with symmetry A 1g, E 1g, and E 2g were identified by detailed symmetrical analysis for the polarized-Raman spectra. Received: 29 October 1998 / Accepted: 29 March 1999 / Published online: 24 June 1999  相似文献   

10.
Three mechanisms for spatially resolved growth and removal of oxide on silicon substrates have been investigated. Thermally grown oxide layers with thicknesses in the range 2–6 nm were the distinctive feature of the system. The layers were characterized and manipulated by methodologies based on atomic force microscopy (AFM) with conducting probes in a vacuum environment of 10-2–10-3 Pa. The probe is then effectively a travelling electrode that generates an electrostatic field between the tip and the substrate. Oxide growth was induced for a positive sample bias greater than 5 V, but below the level corresponding to dielectric breakdown. Application of a short pulse of amplitude marginally above that corresponding to dielectric breakdown, on the other hand, had the effect of producing pits of inner diameter of about 10 nm in the pre-existing oxide layer at the point of tip-to-oxide contact. Application of a low positive sample bias (less than that required for measurable oxide growth) in combination with high linear scan speed had the effect of removing a pre-existing oxide layer from the scanned field of view. The most plausible mechanisms are based on transverse ionic diffusion (for oxide growth), controlled dielectric breakdown (for formation of pits) and lateral transport of silicaceous species (for oxide removal). Received: 24 October 2001 / Accepted: 6 January 2002 / Published online: 3 June 2002 RID="*" ID="*"Corresponding author. Fax: +617-3875-7656, E-mail: s.myhra@sct.gu.edu.au  相似文献   

11.
Carbon-nanotube films are very efficient cathodes for field-emission devices. This study presents a comprehensive comparison between structural, spectroscopic and field-emission properties of films of aligned and non-aligned multi-wall nanotubes (MWNTs) which are grown by thermal chemical vapour deposition. Three types of films are investigated: vertically aligned MWNTs with clean and coated nanotube side walls as well as non-aligned MWNT films. Raman spectra taken on the aligned MWNT films consist of many lines of first-, second- and third-order signals. Several lines are reported here for the first time for MWNTs. The presence of the surface coating leads to a decrease and broadening of the higher-order signals as well as an increase in the disorder-induced contributions in the first-order regime. The aligned MWNT films have excellent field-emission properties with very high emission current densities and low turn-on and threshold fields. The presence of a surface coating has no impact on the efficiency of the field-emission process. Films of non-aligned MWNTs show considerably reduced electron-emission current densities and larger critical fields. Received: 25 April 2001 / Accepted: 30 May 2001 / Published online: 25 July 2001  相似文献   

12.
We present Raman scattering on carbon nanotubes functionalized with pentyl groups. Studies of the intermediate frequency region and the C–H bond stretching signal along with the D mode show evidence of the addition reaction by Raman spectroscopy. From the resonance profiles of the radial breathing mode (RBM) we assign the chiral indices of the tubes and study the influence of the functionalization on the transition energies, shift and intensity of the RBM signal. The largest effect we observe is on the Raman intensity of the radial breathing mode. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


13.
Metal/dielectric composite films consisting of metal objects located in dielectric matrix are investigated by computer simulation. The complete computer experiment is devoted to the study of correlation between structural properties and electrical characteristics of composite films. In the present analysis transport properties of films are calculated near the metal-dielectric transition when the basic mechanism of charge transport is the tunnel effect. The conductivity of composite film is disseminated into individual percolation paths influenced by object arrangements in the composite film.  相似文献   

14.
Transparent zinc oxide (ZnO) thin films with a thickness from 10 to 200 nm were prepared by the PLD technique onto silicon and Corning glass substrates at 350 °C, using an Excimer Laser XeCl (308 nm). Surface investigations carried out by atomic force microscopy (AFM) and X-ray diffraction (XRD) revealed a strong influence of thickness on film surface topography. Film roughness (RMS), grain shape and dimensions correlate with film thickness. For the 200 nm thick film, the RMS shows a maximum (13.9 nm) due to the presence of hexagonal shaped nanorods on the surface. XRD measurements proved that the films grown by PLD are c-axis textured. It was demonstrated that the gas sensing characteristics of ZnO films are strongly influenced and may be enhanced significantly by the control of film deposition parameters and surface characteristics, i.e. thickness and RMS, grain shape and dimension.  相似文献   

15.
We report on Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) investigations on chemical vapour deposited heteroepitaxial diamond films. Besides the good macroscopic crystal morphology a statistical tilt up to ±5.2° of the oriented crystallites has been found relative to the silicon substrates. By optimizing the process conditions, however, the crystal tilt of the films can be reduced, resulting in an improved film perfection. On crystallite (001)-surfaces a substructure of growth facets or islands has been found and high resolution STM images have established a 2×1 surface reconstruction on these growth facets. AFM and SEM were applied to study the morphology of diamond nuclei initially grown on the silicon substrate. Strong island like (Volmer-Weber) growth has been found, with a nucleus height to diameter ratio of 1:1. While the islands are growing in size with respect to time of nucleation, its aspect ratio does not change, due to the high surface free energy of the diamond relative to silicon.  相似文献   

16.
The surfaces of three commercial urea formaldehyde polysulfone membranes from Dow DenmarkTM (GR51, GR61 and GR81) are characterised both topographically and chemically. Their topography is studied by scanning force microscopy to obtain the corresponding pore-size distributions, which are in fair agreement with nominal molecular weight cut-offs. The composition of the surfaces of the membranes is analysed by X-ray photoelectron spectroscopy. The resulting percentage content of nitrogen, which could be attributed probably to an additive used in the manufacturing process, is shown to correlate with the portion of the total surface with different viscoelastic properties as investigated by using phase-contrast scanning force microscopy. Both parameters are increasing for membranes with decreasing molecular weight cut-off. Also, the additive seems to be more sparsely distributed for the membranes with bigger pores, according to fractal analysis. Finally, all the membranes are very similarly wettable. Received: 22 May 2001 / Accepted: 30 May 2001 / Published online: 25 July 2001  相似文献   

17.
Using composition-spread technique, we have grown metastable Mg1−xCaxO solid solution films on ZnO layers by pulsed laser deposition. All the films exhibited (1 1 1) oriented cubic phase. Despite a large miscibility gap, no phase separation took place at growth temperatures up to 700 °C, whereas an optimal growth temperature was found at 400 °C in terms of the crystallinity. The composition-spread films were characterized by X-ray diffraction mapping technique. Both lattice parameters and diffraction intensity increased with increasing the CaO composition. The present isovalent heterointerfaces realized the perfect lattice-matching by properly adjusting the CaO composition, leading to particular interest for ZnO based field effect transistors.  相似文献   

18.
The growth of perylene films on an amorphous oxide bottom layer is investigated. The perylene films show clear spiral growth and formation of screw dislocations. As a function of deposition rate and film thickness the densities of screw dislocations, grains as well as the roughness and the lateral correlation length are determined from AFM images. The evolution of microstrain as calculated from an XRD peak profile analysis corresponds to the dislocation density. The simultaneous decrease of grain density and dislocation density with film thickness is explained by considering the overgrowth of grains due to loss of dislocations acting as growth spirals. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


19.
Carbon onions produced by DC arc discharge method were deposited on highly oriented pyrolytic graphite (HOPG) surface and their adsorption and manipulation was studied using an atomic force microscopy (AFM). Well-dispersed adsorption of carbon onions on HOPG surface was obtained and aggregations of onions were not observed. The van der Waals interaction between the onion and HOPG surface and that between two onions, were calculated and discussed using Hamaker's theory. The manipulation of adsorbed onions on HOPG surface was realized using the AFM in both the raster mode and the vector mode. The controllability and precision of two manipulation modes were compared and the vector mode manipulation was found superior, and is a useful technique for the construction of nano-scale devices based on carbon onions.  相似文献   

20.
The evolution of piezoelectric properties of Pb(Zr,Ti)O3 (PZT) thin films after ion beam etching have been investigated at the nanoscale level by piezoelectric force microscopy. A comparison of the piezoelectric properties on etched and unetched films is realized. Piezoelectric contrasts imaging evidences a modification of the domain architecture at the film surface. Local piezoelectric hysteresis loops measurements on grains indicate that the coercive voltage for switching is much higher for the etched films (2.3 V) compared to the unetched ones (1.0 V) while the average piezoelectric activity is slightly lower. The results are explained in terms of grain-damaging during etching and domain-wall pinning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号