首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gallium nitride thin films were grown on silicon carbide (0001) by plasma‐assisted molecular beam epitaxy (PAMBE). The samples were cooled down in nitrogen plasma and characterized in situ by reflection high energy electron diffraction (RHEED), photoelectron spectroscopy (XPS/UPS), and atomic force microscopy (AFM) revealing stoichiometric and smooth GaN films virtually free of contaminations. We present valence band data obtained by UPS with strong emission from surface states inside the fundamental band gap. These states and the observed 2 × 2 surface reconstruction are highly sensitive towards residual molecules. Once these surface states have disappeared the original state could not be recovered by surface preparation methods underlining the necessity of in situ investigations on as‐grown surfaces. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
SiO2/TiO2/γ-glycidoxypropyltrimethoxysilane composite materials processed by the sol-gel technique were studied for optical waveguide applications. Waveguide films with thickness more than 1.7 μm were prepared on a silicon substrate by a single-coating process and low-temperature heat treatment from these high-titanium-content composite materials. Scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal gravimetric analysis (TGA), UV-visible spectroscopy (UV-VIS), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) have been used to characterize the waveguide films. TGA curves showed that organic compounds in the composite materials would decompose in the temperature range from 200 °C to 480 °C. SEM, AFM and UV-VIS results showed that a dense, porous-free, and high transparency in the visible range waveguide film could be obtained at a low heat-treatment temperature. It was also noted that the carbon content in the film with higher titanium content heated at high temperature was evidenced by XPS. The waveguide propagation loss properties of the composite material films were also investigated and showed a dependence on the titanium molar fraction. Received: 13 June 2000 / Accepted: 21 June 2000 / Published online: 20 September 2000  相似文献   

3.
To improve antithrombogenicity of polyethylene (PE) films, the films pretreated by Ar plasma were radiated by ultraviolet light to initiate grafting polymerization with acrylamide (AAm) in absence of photo-initiator, then the AAm-grafted PE films (PE-g-AAm) were alcoholized with octadecyl alcohol. Effects of Ar plasma composite parameter (W/FM), pretreated time, AAm monomer concentration, and UV irradiation time on grafting rate were investigated systematically. AAm-grafted PE film and alcoholized PE film (PE-g-SAAm) were characterized by contact angle, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transfer infrared (ATR-FT-IR) spectroscopy and atomic force microscope (AFM), respectively. The results indicated that the moieties of AAm and stearyl were successively immobilized onto the PE surface. The platelet adhesion experiment showed that antithrombogenicity of the modified PE films was improved in comparison with PE films. The change in antithrombogenicity is attributed to the surface of the modified film in presence of tail-like structure which consists of polyacrylamide as spacer and stearyl as end groups.  相似文献   

4.
Surfaces of GaN films were investigated by atomic force microscopy (AFM) with implemented piezoelectric force microscopy technique. A model of PFM based on the surface depletion region in GaN films is discussed. The local piezoelectric effect of the low frequency regime was found to be in phase with the applied voltage on large domains, corresponding to a Ga-face of the GaN layer. Low piezoresponse is obtained within the inter-domain regions. The use of frequencies near a resonance frequency enhances very much the resolution of piezo-imaging, but only for very low scanning speed the piezo-imaging can follow the local piezoelectric effect. An inversion of the PFM image contrast is obtained for frequencies higher than the resonance frequencies. The effect of a chemical surface treatment on the topography and the piezoresponse of the GaN films was also investigated. Textured surfaces with very small domains were observed after the chemical treatment. For this kind of surfaces, piezo-induced torsion rather than bending of the AFM cantilever dominates the contrast of the PFM images. A small memory effect was observed, and explained by surface charging and confinement of the piezoelectric effect within the carrier depletion region at the GaN surface.  相似文献   

5.
Polyamide 6 (PA 6) films are treated with helium(He)/CF4 plasma at atmospheric pressure. The samples are treated at different treatment times. The surface modification of the PA 6 films is evaluated by water contact angle, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The etching rate is used to study the etching effect of He/CF4 plasma on the PA 6 films. The T-peel strengths of the control and plasma treated films are measured to show the surface adhesion properties of the films. As the treatment time increases, the etching rate decreases steadily, the contact angle decreases initially and then increases, while the T-peel strength increases first and then decreases. AFM analyses show that the surface roughness increases after the plasma treatment. XPS analyses reveal substantial incorporation of fluorine and/or oxygen atoms to the polymer chains on the film surfaces.  相似文献   

6.
Conducting ferroelectric domain walls attract a wide range of research interest due to their promising applications in nanoelectronics. In this study, we reveal an unexpected enhanced conductivity near the well‐aligned 71° nonpolar domain walls in BiFeO3. Such an interfacial conductivity is induced by the creation of up‐polarized nano‐domains near the 71° domain walls, as revealed by the combination of the piezo‐response force microscopy (PFM) and conducting atomic force microscopy (c‐AFM) imaging techniques, as well as phase‐field simulations. The upward polarized domains are suggested to lower the Schottky barrier at the interface between the tip and sample surface, and then give rise to the enhanced interfacial conductivity. The result provides a new strategy to tune the local conductance in ferroelectric materials and opens up new opportunities to design novel nanoelectronic devices.  相似文献   

7.
Alkaline chemical synthesis of amorphous CdCr2S4 (CCS) thin films of different thicknesses using cadmium chloride, chromic acid, disodium salt of ethylenediaminetetra acetic acid and thiourea precursors is reported, and the structural and surface morphological properties of CCS using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques are discussed. Films of aggregated grains with some void spaces are obtained. Change in band gap energy and electrical resistivity of CCS films are discussed as a function of film thickness. n-type conductivity is confirmed from the sign of thermally generated voltage across the cold and hot junctions.  相似文献   

8.
Amorphous gallium nitride (a-GaN) films have been deposited on Si (100) substrates using ion-assisted deposition. The deposited films were characterised by X-ray diffraction (XRD) and atomic force microscopy (AFM). XRD confirms the amorphous nature of the films and AFM showed nanostructures in the films. The field electron emission from the film was obtained in a probe-hole field emission microscope, and the current-voltage (I-V) characteristics were studied. The corresponding Fowler-Nordheim (F-N) plots showed a linear behaviour. A current density of 0.1 A/cm2 has been obtained for 1.2 V/μm electric field. The field emission current-time (I-t), curves were recorded at a current level of 500 nA for 3 h. The field emission behaviour is compared with that of crystalline GaN as reported in literature.  相似文献   

9.
Magnetron sputtered polycrystalline ZnO thin films were implanted using Al, Ag, Sn, Sb and codoped with TiN in order to improve the conductivity and to attempt to achieve p-type behaviour. Structural and electrical properties of the implanted ZnO thin films were examined with X-ray diffractometry (XRD), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and conductivity measurements. Depth profiles of the implanted elements varied with the implant species. Implantation causes a partial amorphisation of the crystalline structure and decreases the effective grain size of the films. One of the findings is the improvement, as a consequence of implantation, in the conductivity of initially poorly conductive samples. Heavy doping may help for the conversion of conduction type of ZnO thin films. Annealing in vacuum mitigated structural damage and stress caused by implantation, and improved the conductivity of the implanted ZnO thin films.  相似文献   

10.
This study is designed to systematically investigate how various factors, such as treatment duration, output power, oxygen gas flux, jet to substrate distance, and moisture regain, influence atmospheric pressure plasma etching rate of polyamide 6 (PA 6) films. The etching rate increased as the output power, oxygen gas flux, and moisture regain increased. As the treatment time increased, the etching rate increased first and then decreased. When the substrate was too close or too far from the nozzle, the etching rate was almost not measurable. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show an increased surface roughness after the plasma treatment. X-ray photoelectron spectroscopy (XPS) shows a decreased carbon content and an increased oxygen content after the plasma treatment. T-peel strength shows an improved bonding strength between the PA 6 films and an adhesive tape after the plasma treatment.  相似文献   

11.
The local conductivity of SrTiO3 thin films epitaxially grown on SrRuO3‐buffered SrTiO3 single crystals has been investigated in detail with an atomic force microscope equipped with a conducting tip (LC‐AFM). These experiments demonstrate that the conductivity of SrTiO3 thin films originates from nanoscale well‐conducting filaments connecting the surface to the SrRuO3 bottom electrode. The electrical conduction of the filaments is shown to be reversibly modulated over several orders of magnitude by application of an appropriate electrical field. We analyze the resistive switching by addressing individual filaments with the AFM tip as well as by scanning areas up to the µm scale. Temperature dependent measurements reveal that resistive switching on a macroscopic scale can be traced down to the insulator‐to‐metal transition of the independently switchable filaments. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The annealing effects of sapphire substrate on the quality of epitaxial ZnO films grown by metalorganic chemical vapor deposition (MOCVD) were studied. The atomic steps formed on (0 0 0 1) sapphire (α-Al2O3) substrate surface by annealing at high temperature was analyzed by atomic force microscopy (AFM). The annealing effects of sapphire substrate on the ZnO films were examined by X-ray diffraction (XRD), AFM and photoluminescence (PL) measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface. The optimum annealing temperature of sapphire substrates is given.  相似文献   

13.
Diamond film is an ultra-durable optical material with high thermal conductivity and good transmission in near-infrared and far-IR (8-14 μm) wavebands. CVD diamond is subjected to oxidation at temperature higher than 780 °C bared in air for 3 min, while it can be protected from oxidation for extended exposure in air at temperature up to 900 °C by a coating of aluminum nitride. Highly oriented AlN coatings were prepared for infrared windows on diamond films by reactive sputtering method and the average surface roughness (Ra) of the coatings was about 10 nm. The deposited films were characterized by X-ray diffraction (XRD) and atom force microscope (AFM). XRD confirmed the preferential orientation nature and AFM showed nanostructures. Optical properties of diamond films coated AlN thin film was investigated using infrared spectrum (IR) compared with that for as-grown diamond films.  相似文献   

14.
Previous work by the authors on micromachining of Al2O3-TiC ceramics using excimer laser radiation revealed that a columnar surface topography forms under certain experimental conditions. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations show that the columns develop from small globules of TiC, which appear at the surface of the material during the first laser pulses. To understand the mechanism of formation of these globules, a 2D finite element ablation model was developed and used to simulate the time evolution of the temperature field and of the surface topography when a sample of Al2O3-TiC composite is treated with KrF laser radiation. Application of the model showed that the surface temperature of TiC rises much faster than that of Al2O3, but since TiC has a very high boiling temperature, its vaporization is significant only for a short time. By contrast, the surface temperature of Al2O3 rises above its boiling temperature for a much longer period, leading to a greater ablation depth than TiC. As a result, a small TiC globule stands above the Al2O3 surface. The results of the model are compared with experimental measurements performed by AFM. After three pulses, the height of the globules predicted by the model is about 340 nm, in good agreement with the height measured experimentally, about 400 nm.  相似文献   

15.
Kelvin probe force microscopy (KFM) and conductive atomic force microscopy (C‐AFM) together with micro X‐ray photoelectron spectroscopy (XPS) were performed for the stacking structure comprising of the transition metal oxide Co–O and metal electrode, which exhibits large reproducible resistance switching. The application of the external voltage by the C‐AFM cantilever decreases the resistance of Co–O, which well accords with the non‐polar forming process observed in the Pt/Co–O/Pt trilayer, known as the candidate of resistance random access memory (ReRAM). Furthermore, the KFM and micro XPS experimentally revealed that the local reductive reaction of Co–O possibly nucleates the defect related energy levels which dominates the current conduction in the low resistance state. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
《Current Applied Physics》2015,15(5):599-607
A new composite material from epoxidized natural rubber (ENR-50) and polyaniline have been successfully prepared. Aniline which was polymerized in the presence of dodecylbenzene sulfonic acid (DBSA), then added to ENR-50 for the preparations of ENR-50/Pani.DBSA composite films. The hydrogen bonding which contribute to the formation of ENR-50/Pani.DBSA composites was observed in FT–IR, UV–Visible and DSC. It showed hydrogen bonding interactions between the epoxy groups in ENR-50 and the amine groups in Pani.DBSA. The morphologies of the prepared materials were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and conductivity measurements revealed that the percolation threshold is at 2.5 w% of Pani.DBSA content. Atomic force microscopy (AFM) micrographs showed that ENR-50 with 5 wt% Pani.DBSA addition has the lowest surface roughness. In addition thermogravimetric analysis indicates improved thermal stability at low Pani.DBSA content. DSC measurements revealed that Tg value increases with increasing Pani.DBSA, indicating that the formation of homogenous composite material. Nanoindentation results show that the hardness (H) and Young's modulus (Es) increased with higher addition of Pani.DBSA polymer.  相似文献   

17.
We report a novel method for the fabrication of films of silver nanoparticle aggregates that are strongly attached to Si substrates (Thiol‐immobilized silver nanoparticle aggregates or TISNA). The attachment is achieved by chemically modifying the surface of a Si(100) surface in order to provide SH groups covalently linked to the substrate and then aggregating silver nanoparticles on these thiol covered surfaces. The transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) characterization show a high coverage with single nanoparticles or small clusters and a partial coverage with fractal aggregates that provide potential hot spots for surface enhanced Raman scattering (SERS). We have confirmed the SERS activity of these films by adsorbing rhodamine 6G and recording the Raman spectra at several concentrations. By using the silver‐chloride stretching band as an internal standard, the adsorbate bands can be normalized in order to correct for the effects of focusing and aggregate size, which determine the number of SERS active sites in the focal area. This allows a quantitative use of SERS to be done. The adsorption–desorption of rhodamine 6G on TISNA films is reversible. These features make our TISNA films potential candidates for their use in chemical sensors based on the SERS effect. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Extremely thin sheets of carbon atoms called graphene have been predicted to possess excellent thermal properties, electrical conductivity, and mechanical stiffness. To harness such properties in composite materials for multifunctional applications, one would require the incorporation of graphene. In this study, new thin film composites were created using layer-by-layer (LBL) assembly of polymer-coated graphitic nanoplatelets. The positive and negative polyelectrolytes used to cover graphene sheets were poly allylamine hydrochloride (PAH) and poly sodium 4-styrenesulfonate (PSS). The synthesized poly allylamine hydrochloride-graphene (PAH-G) and poly sodium 4-styrenesulfonate-gaphene (PSS-G) were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and thermo gravimetric analysis (TGA). The multilayer films created by spontaneous sequential adsorption of PAH-G and PSS-G were characterized by ultra violet spectroscopy (UV-vis), scanning electron microscopy (SEM), and AFM. The electrical conductivity of the graphene/polyelectrolyte multilayer film composites measured by the four-point probe method was 0.2 S cm−1, which was sufficient for the construction of advanced electro-optical devices and sensors.  相似文献   

19.
A unique vapor phase deposition (VPD) technique was designed and built to achieve in situ CdCl2 treatment of CdTe film. The substrate temperature was 400 °C, and the temperature of CdTe mixture with CdCl2 source was 500 °C. The structural and morphological properties of CdTe have been studied as a function of wt.% CdCl2 concentration by using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). XRD measurements show that the presence of CdCl2 vapor induces (1 1 1)-oriented growth in the CdTe film. SEM measurements have shown enhance growth of grains, in the presence of CdCl2. From AFM the roughness of the films showed a heavy dependence on CdCl2 concentration. In the presence of 4% CdCl2 concentration, the CdTe films roughness has a root mean square (rms) value of about 275 Å. This value is about 831 Å for the non-treated CdTe films.  相似文献   

20.
In this work, we show experimental results for growth conditions of thermoelectric Ce0.9CoFe3Sb12 thin films. An rf-magnetron sputtering system has been used to grow the films on single crystal substrates of sapphire (Al2O3), silicon (Si), and magnesium oxide (MgO) at different substrate temperatures between 250 and 450 °C. The films were thermoelectrically characterized with resistivity and thermopower measurements as functions of temperature. The results show linear behavior of resistivity with temperature, and thermopower growth with the temperature increase. Such behavior is typical for metallic materials. The structure and surface morphology of the samples were analyzed by X-ray diffraction pattern and atomic force microscopy (AFM), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号