首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new carbon paste electrode (CPE) for the determination of iodide ion based on a cetyltrimethylammonium iodide (CTMAI) ion pair as an electroactive material is described. The electrode shows a linear response for iodide ion over the concentration range of 4 x 10(-5) M to 1 x 10(-1) M with a lower detection limit of 4 x 10(-5) M at 25 degrees C. The electrode has a Nemstian slope of -55.0 +/- 0.4 mV/decade and a fast potential response of 45 s, which is almost constant over a pH range of 5.0 - 9.0. Selectivity coefficient data of the CTMAI-CPE for some common ions show negligible interference, and the electrode has high selectivity towards the iodide ion. An average recovery of 101.83% with a relative standard deviation of 1.53% has been achieved for the determination of iodide in Flaxedil (gallamine triethiodide) ampoules, a muscle relaxant drug. The electrode has been examined for the determination of iodide in saline water; the results were found to compare favorably with those obtained using Metrohm iodide ISE. The electrode has been utilized as an end-point indicator electrode for the determination of Hg(II) and phenylmercury(I) in their aqueous solutions using potentiometric titration with a potassium iodide standard solution.  相似文献   

2.
The voltammetry behavior of iodine and selenium has been studied on new organo-modified electrodes. The conditions have been proposed for the measurement of the analytical signals of iodide and selenium ions on a silver electrode modified by aryl diazonium tosylates containing an amino group in the presence of a 0.1 M solution of N2H4 · H2SO4 (pH 2–3) without oxygen removal. A new approach and a procedure have been developed for the simultaneous determination of iodine and selenium in tap, drinking, and mineral waters using the organo-modified electrode. The analytical range is from 0.003 to 1.5 mg/L for iodide ions and from 0.003 to 2.0 mg/L for selenite ions.  相似文献   

3.
A rapid, selective, and sensitive kinetic flow-injection method for iodide content determination with amperometric detection on a platinum electrode was developed. The method is based on the catalytic effect of iodide on the Mn3+ reaction with As3+ in the presence of sulfuric acid. The calibration curve was linear in the concentration range from 5.0 x 10(-7) to 1.0 x 10(-4) mol/L iodide. The limit of detection (LOD) was found to be 5.0 x 10(-9) mol/L iodide. The relative standard deviations (RSD) were 1.68% and 3.03% for 1.0 x 10(-3) mol/L standard and 1.0 x 10(-6) mol/L iodide solution (n = 6), respectively. The method has been successfully applied for determination of iodide in waters, table salts, fodder, organic substances and human blood sera. The results were compared with those obtained by a standard AOAC (Association of Official Analytical Chemists) method, as well as with those obtained by a kinetic spectrophotometric procedure for determination of iodide.  相似文献   

4.
催化电位法测定痕量铜   总被引:2,自引:0,他引:2  
本文提出固定时间标准校正比较法,用碘离子选择性电极为指示电极研究了Cu2+-S2O82--I-反应体系催化测定痕量Cu2+的最佳条件并应用于实际分析。  相似文献   

5.
《Electroanalysis》2005,17(14):1309-1316
The detection limit (about 0.017 μg mL?1) for voltammetric determination of iodide (peak at +0.87 V vs. Ag/AgCl at pH 2) at a glutaraldehyde‐cross‐linked poly‐L ‐lysine modified glassy carbon electrode involving oxidation to iodine was found to be several orders of magnitude lower than that for the voltammetric determination on a bare glassy carbon electrode. This method was applied successfully to the determination of iodide in two medicinal formulations. Idoxuridine was determined indirectly at the same electrode by accumulating it first at ?0.8 V vs. Ag/AgCl. At this potential the C? I bond in the adsorbed idoxuridine is reduced giving iodide, which is then determined at the modified electrode. The method was successfully applied to the determination of idoxuridine in a urine sample.  相似文献   

6.
The frequency of a piezoelectric quartz crystal is decreased when iodide is electrodeposited on the silver electrode of the crystal at—0.05 V vs. Ag/AgCl. From 3 × lO-7 M to 1 × 10-5 M iodide can be determined with few interferences, and a procedure for removal of interfering species is given. Iodide is removed from the electrode by electrolysis at —0.4 V after each determination.  相似文献   

7.
A silver-based solid carbon paste electrode was developed for use as a detector in ion chromatography (IC) for the sensitive determination of iodide in real samples. Micro- and nano-particles of silver were investigated for the fabrication of different electrodes. The iodide assay was based on IC with amperometric detection (IC-AD) at a silver composite electrode polarized at +0.080 V versus Ag/AgCl. Free iodide and organoiodide compounds were studied. The detection process was characterized by studying the redox behavior of iodide ions at both silver and silver composite electrodes by cyclic voltammetry (CV). The presence of iodide ions in solution was found to considerably facilitate metallic silver oxidation, with response currents directly related to iodide concentration. The calibration curve at the selected silver carbon paste electrode was linear in the concentration range comprised between 0.635 microg/L and 63.5 microg/L iodide. The relative standard deviation (R.S.D.) for successive injections was below 3% for all iodide standard solutions investigated. The limit of detection (LOD) was 0.47 microg/L (3.7 nmol/L) for an injection volume of 20 microL, i.e. 74 fmol injected. The IC-AD method was successfully applied to the determination of iodide in complex real samples such as table salts, sea products and iodide bound drug compounds. The analytical accuracy was verified by the assay of iodide in milk powder from an iodide certified reference material (CRM) Community Bureau of Reference (BCR) 150.  相似文献   

8.
A rapid and very sensitive method for the accurate determination of free iodide in real samples is described. The method is based on anion-exchange chromatographic separation coupled with amperometric detection at a modified platinum electrode under constant applied potential (+0.85 V vs. Ag AgCl). An experimental setup with an in-line and very effective method of electrode modification is proposed using an amperometric thin-layer cross-flow detector and a flowing solution 300 mg/L of iodide; the working electrode is polarised to the limiting current for oxidation of iodide to iodine in acidic solutions with the consequent formation of an iodine-based film. The results indicated that the modified electrode exhibits high analytical response for iodide electrooxidation with good stability and long-life. The signal intensity of daily experimental sessions (8 h), during which standards and real samples were repeatedly injected, exhibits a moderate lowering (i.e. <6%). Using a mixture of 25 mM HNO3 and 50 mM NaNO3 as an eluent phase in ion-exchange chromatography, the detection limit of iodide was estimated to be 0.5 g/L (S/N=3) with an injection volume of 50 L. This method was applied successfully to quantify the iodide content of milk samples and in wastewaters as well as trace amounts in common vegetables and solutions containing high chloride levels.  相似文献   

9.
本文用长链季鏻盐十六烷基三苯基鏻(HTPP)制备了一种新的溴胺T(BAT)离子电极。其性能较类似的氯胺T有显著改善。用其跟踪碘离子催化的BAT-H2O2反应可测定0.4-64ppb范围内的碘,多数离子不干扰测定。提出了催化反应的可能机理,并确定了催化反应的动力学方程。该法用于人体血清蛋白结合碘的测定,获得了较好的结果。  相似文献   

10.
Masadome T  Sonoda R  Asano Y 《Talanta》2000,52(6):1123-1130
A potentiometric flow injection determination method for iodide ion in a photographic developing solution was proposed by utilizing a flow-through type iodide ion-selective electrode detector. The sensing membrane of the electrode was Ag2S–AgI membrane. The response of the electrode detector as a peak-shape signal was obtained for injected iodide ion in a photographic developing solution. A linear relationship in the subnernstian zone was found to exist between peak height and the concentration of the iodide ion in a photographic developing solution in a concentration range from 0 to 6.0×10−5 mol l−1. The relative standard deviation for ten injections of 2×10−5 mol l−1 iodide ion in a photographic developing solution was 0.96% and the sampling rate was approximately 12–13 samples h−1. The iodide ion could be determined under coexisting of an organic reducing reagent and inorganic electrolytes of high concentration in a photographic developing solution sample solution by the present method.  相似文献   

11.
长寿命高选择性液膜碘离子电极的研究   总被引:6,自引:0,他引:6  
合成了PVC-双硫腙-Hg(Ⅱ)载体.以该载体物质制备了高选择性碘离子电极,其选择性次序为:I-》ClO4->SCN->NO2-》Sal-~Br->NO3->Cl-.电极对碘离子的线性响应范围为1×10-3~5×10-7mol/L,检测下限为2×10-7mol/L,斜率为(59±1)mV/decade(16℃).并研究了电极的响应机理,表明系碘离子与载体中金属汞原子直接作用.将该电极应用于食盐中碘的测定,取得了满意的结果.  相似文献   

12.
A new highly selective iodide electrode incorporating a binuclear manganese(III) complex, bis(salicylaldehyde-aminopropanol)dichloroaceticdimanganese(III) [Mn(III)(2)-BSAPDCA], as a neutral carrier is described. The electrode displays an anti-Hofmeister selectivity sequence: iodide > perchlorate > salicylate > thiocyanate > nitrate > bromide > nitrite > chloride > sulfate. The excellent selectivity for iodide is related to a direct interaction between the central Mn(III) atom and iodide and a steric effect associated with the structure of the carrier, which is supported by UV spectroscopy and AC impedance techniques. The electrode exhibits a near-Nernstian potentiometric linear response range to iodide from 1.0 x 10(-1) to 2.0 x 10(-5) mol/L with a detection limit of 8.0 x 10(-6) mol/L and a slope of -60.3 mV/decade in pH 3.0 of phosphate buffer solutions at 20 degrees C. From a comparison of the potentiometric response characteristics between a binuclear manganese(III) complex, Mn(III)(2)-BSAPDCA, and a mononuclear manganese(III) complex, Mn(III)-BSAPB, an enhanced response towards iodide from a binuclear metallic complex-based electrode was observed. The electrode, based on binuclear manganese(III) complex, was successfully applied to the determination of inorganic total iodine in iodized table salt with satisfactory results.  相似文献   

13.
A new stationary phase for iodide ion analysis has been developed. The cationic polymerepichlorohydrin-dimethylamine(PEPI-DMA) was served as modifier in synthesizing polyelectrolyte sorbents and the macroporous polystyrene-divinylbenzene(PS-DVB) resin was used as support. The positively charged polymer(PEPI-DMA) was electrostatically bonded to a negatively charged particle(PS-DVB sulfonated). The new stationary phase was characterized by scanning electron microscopy(SEM), Fourier transform infrared(FTIR), elemental analysis, chemical adsorption and desorption measurements. The chromatographic evaluation of the new stationary phase was performed using various anions with a conductivity detector. The new stationary phase was also applied to the determination of iodide directly with a DC amperometric detector using a platinum working electrode and an Ag/Ag Cl reference electrode. The chromatographic conditions were optimized and the eluent solution contained 5 mmol/L HNO3 and 15 mmol/L Na NO3 at a flow rate of 1.0 m L/min and column temperature of 30 8C. The applied voltage of the DC amperometric detector was 0.9 V. Under the optimum conditions, the linear range of the method was 0.2–50 mg/L for iodide ion with a correlation coefficient of 0.9990. The detection limit was 0.05 mg/L(calculated at S/N = 3) and the relative standard deviations(RSD, n = 6) were all less than 1% for retention time, peak area and peak height. This method was also utilized for the determination of iodide ions in samples of povidone iodine solution and kelp samples with satisfactory results.  相似文献   

14.
A simple and rapid procedure, utilising constant-current stripping analysis (CCSA) at a carbon-paste electrode containing tricresyl phosphate as a pasting liquid (TCP-CPE), has been developed for the determination of iodide in table salt. Because of a synergistic accumulation mechanism based on ion-pairing and extraction of iodide in combination with electrolytic pretreatment of the TCP-CPE, the method is selective for iodide and enables direct determination of iodide in samples of table salt containing anti-caking agents such as K(4)[Fe(CN)(6)] (food additive "E 536") or MgO. The iodide content (calculated as KI) can be determined in a concentration range of 2 to 100 mg kg(-1) salt, with a detection limit (S/N=3) of 1 mg kg(-1), and a recovery from 90 to 115%. The proposed method has been used to determine iodide in several types of artificially iodised table salt and in one sample of natural sea salt. The results obtained agreed well with those obtained by use of three independent reference methods (titration, spectrophotometry, and ICP-MS) used to validate the CCSA method, indicating that the developed method is applicable as a routine procedure for rapid testing in salt production process control and in the analysis of marketed table salts.  相似文献   

15.
Summary For trace determination of iodine in air 40–400 1 air are drawn through a washing bottle filled with 13% K2CO3 solution. After neutralization against phenolphthaleine the iodide concentration is measured with an iodide selective electrode using the standard addition method. The slope of the electrode response curve is checked after each sample measurement. This method allows the rapid and simple determination of iodine contents 0.5gmg/m3. The results are compared with those obtained by a kinetic photometric method. Measurements were carried out in the area of Bad Hall (Upper Austria) known for its iodide containing brine springs.This paper is dedicated to Univ.-Prof. Dr. Karl Winsauer on the occasion of his 60th birthday.  相似文献   

16.
Lima JL  Delerue-Matos C  Carmo M  Vaz VF 《The Analyst》2000,125(7):1281-1284
The development of a FIA system for the determination of total choline content in several types of milk is described. The samples were submitted to hydrochloric acid digestion before injection into the system and passed through an enzymatic reactor containing choline oxidase immobilised on glass beads. This enzymatic reaction releases hydrogen peroxide which then reacts with a solution of iodide. The decrease in the concentration of iodide ion is quantified using an iodide ion selective tubular electrode based on a homogeneous crystalline membrane. Validation of the results obtained with this system was performed by comparison with results from a method described in the literature and applied to the determination of total choline in milks. The relative deviation was always < 5%. The repeatability of the method developed was assessed by calculation of the relative standard deviation (RSD) for 12 consecutive injections of one sample. The RSD obtained was < 0.6%.  相似文献   

17.
A rapid and reliable determination of chromium was developed based on bromate oxidation of chromium(III) to chromium(VI). The reaction is complete under weakly acidic conditions and with cobalt(II) present as a catalyst. Unreacted bromate and chromium(VI) are then reduced with sulfite to bromide and chromium(III). The bromide is titrated potentiometrically with mercury(I) using a silver amalgam indicator electrode. Iron(III) if present is reduced by sulfite to iron(II) and does not interfere. Some binary and ternary metal mixtures containing chromium can be resolved by the determination of chromium, alone or with another metal, by the above procedure coupled with procedures for further sample portions involving the potentiometric titration of unreacted CyDTA or iodide, or both, with mercury(II).  相似文献   

18.
Polypyrrole (PPy) is a conducting polymer which can be used for producing different ion-selective electrodes. An iodide-doped (PPy-iodide) was prepared electrochemically by anodic polymerisation of pyrrole in the presence of an iodide ion in an aqueous solution on the surface of a pencil lead. Polymerisation was investigated under galvanostatic conditions. The effects of electropolymerisation conditions on the characteristics of the potential response of the sensor were examined. Concentrations of pyrrole, iodide ions, and conditioning solution plus current density and the time of electropolymerisation were optimised in relation to the slope and linearity of calibration graphs. This electrode showed a Nernstian behaviour of 61.1 mV per decade for I? ion over a wide concentration range from 1.0 × 10?5 M to 1.0 × 10?1 M, with the limit of detection of 9.3 × 10?6 M. The response time of the electrode was from 3–5 s. The selectivity coefficients of the prepared sensors over a wide spectrum of interference anions were also evaluated, revealing that selectivity improves as a result of double-coating with PPy. A similar improvement was observed under lower current density and longer electropolymerisation time. This sensor was applied in the determination of iodide ions using titration potentiometry. This electrode can be used for the determination of iodide in drug preparations.  相似文献   

19.
A procedure was developed for the atomic emission determination of antimony, zinc, and bismuth in bird and fish ash using thermochemical iodination reactions in a chamber electrode of an alternating current (ac) carbon arc. A mixture of cadmium iodide and carbon powder was used as an iodination agent. The relative standard deviation of the procedure was 10–15%. The minimum detection limit was 2.1 × 10−4, 7.5 × 10−5, and 1.2 × 10−4% for antimony, bismuth, and zinc, respectively.  相似文献   

20.
The electrochemical determination of iodide was studied at boron-doped diamond thin film electrodes (BDD) using cyclic voltammetry (CV) and flow-injection (FI) analysis, with amperometric detection. Cyclic voltammetry of iodide was conducted in a phosphate buffer pH 5. Experiments were performed using glassy carbon (GC) electrode as a comparison. Well-defined oxidation waves of the quasi-reversible cyclic voltammograms were observed at both electrodes. Voltammetric signal-to-background ratios (S/B) were comparable. However, the GC electrode gives much greater in the background current as usual. The potential sweep rate dependence exhibited that the peak current of iodide oxidation at 1 mM varied linearly (r2 = 0.998) with the square root of the scan rate, from 0.01 to 0.30 V s−1. This result indicates that the reaction is a diffusion-controlled process with negligible adsorption on BDD surface, at this iodide concentration. Results of the flow-injection analysis show a highly reproducible amperometric response. The linear working range was observed up to 200 μM (r2 = 0.999). The detection limit, as low as 0.01 μM (3σ of blank), was obtained. This method was successfully applied for quantification of iodide contents in nuclear emergency tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号