首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The paper analyzes questions related to the construction of dynamic stability boundaries of elastic systems subjected to stochastic parametric excitation. It is supposed that the parametric action is a combination of a deterministic static component and a stochastic fluctuating component. The fluctuating component is taken to be a stationary ergodic process. The stability boundaries are built in the region of combination resonance using the stochastic averaging method and a probabilistic approach due to Khasminskii. In this connection, the stochastic averaging method based on the Stratonovich-Khasminskii theory is used. The probabilistic approach consists in using explicit asymptotic expressions for the largest Lyapunov exponent, from which the asymptotic stability boundaries are determined. As an application, the stability of a simply supported thin-walled bar subjected to a stochastically varying longitudinal load is investigated Published in Prikladnaya Mekhanika, Vol. 41, No. 12, pp. 128–138, December 2005.  相似文献   

2.
Hijawi  M.  Ibrahim  R. A.  Moshchuk  N. 《Nonlinear dynamics》1997,12(2):155-197
This paper deals with the dynamic response of nonlinear elastic structure subjected to random hydrodynamic forces and parametric excitation using a first- and second-order stochastic averaging method. The governing equation of motion is derived by using Hamilton's principle, taking into account inertia and curvature nonlinearities and work done due to hydrodynamic forces. Within the framework of first-order stochastic averaging, the system response statistics and stability boundaries are obtained. Unfortunately, the effects of nonlinear inertia and curvature are not reflected in the final results, since the contribution of these nonlinearities is lost during the averaging process. In the absence of hydrodynamic forces, the method fails to give bounded response statistics, and the analysis yields stability conditions. It is the second-order stochastic averaging which can capture the influence of stiffness and inertia nonlinearities that were lost in the first-order averaging process. The results of the second-order averaging are compared with those predicted by Gaussian and non-Gaussian closures and by Monte Carlo simulation. In the absence of parametric excitation, the non-Gaussian closure solutions are in good agreement with Monte Carlo simulation. On the other hand, in the absence of hydrodynamic forces, second-order averaging gives more reliable results in the neighborhood of stochastic bifurcation. However, under pure parametric random excitation, the stochastic averaging and Monte Carlo simulation predict the on-off intermittency phenomenon near bifurcation point, in addition to stochastic bifurcation in probability.  相似文献   

3.
Ibrahim  R. A.  Hijawi  M. 《Nonlinear dynamics》1998,16(3):259-292
The purpose of this study is to understand the main differences between the deterministic and random response characteristics of an inextensible cantilever beam (with a tip mass) in the neighborhood of combination parametric resonance. The excitation is applied in the plane of largest rigidity such that the bending and torsion modes are cross-coupled through the excitation. In the absence of excitation, the two modes are also coupled due to inertia nonlinearities. For sinusoidal parametric excitation, the beam experiences instability in the neighborhood of the combination parametric resonance of the summed type, i.e., when the excitation frequency is in the neighborhood of the sum of the first bending and torsion natural frequencies. The dependence of the response amplitude on the excitation level reveals three distinct regions: nearly linear behavior, jump phenomena, and energy transfer. In the absence of nonlinear coupling, the stochastic stability boundaries are obtained in terms of sample Lyapunov exponent. The response statistics are estimated using Monte Carlo simulation, and measured experimentally. The excitation center frequency is selected to be close to the sum of the bending and torsion mode frequencies. The beam is found to experience a single response, two possible responses, or non-stationary responses, depending on excitation level. Experimentally, it is possible to obtain two different responses for the same excitation level by providing a small perturbation to the beam during the test.  相似文献   

4.
The stochastic bifurcation and response statistics of nonlinear modal interaction under parametric random excitation are studied analytically, numerically and experimentally. Two basic definitions of stochastic bifurcation are first introduced. These are bifurcation in distribution and bifurcation in moments. bifurcation in moments is examined for the case of a coupled oscillator subjected to parametric filtered white noise. The center frequency of the excitation is selected to be close to either twice the first mode or second mode natural frequencies or the sum of the two. The stochastic bifurcation in moments is predicted using the Fokker-Planck equation together with gaussian and non-Gaussian closures and numerically using the Monte Carlo simulation. When one mode is parametrically excited it transfers energy to the other mode due to nonlinear modal interaction. The Gaussian closure solution gives close results to those predicted numerically only in regions well remote from bifurcation points. However, bifurcation points predicted by the non-Gaussian closure are in good agreement with those estimated by numerical simulation. Depending on the excitation level, the probability density of the excited mode is strongly non-Gaussian and exhibits multi-maxima as predicted by Monte Carlo simulation. Experimental tests are carried out at relatively low excitation levels. In the neighborhood of stochastic bifurcation in mean square the measured results exhibit different regimes of response characteristics including zero motion and occasional small random motion regimes. These two regimes are characterized by the phenomenon of on-off intermittency. Both regimes overlap and thus it is difficult to locate experimentally the bifurcation point.  相似文献   

5.
Zhu  W. Q.  Deng  M. L.  Huang  Z. L. 《Nonlinear dynamics》2003,33(2):189-207
The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged Itô equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.  相似文献   

6.
A new stochastic averaging procedure for single-degree-of-freedom strongly non-linear oscillators with lightly linear and (or) non-linear dampings subject to weakly external and (or) parametric excitations of wide-band random processes is developed by using the so-called generalized harmonic functions. The procedure is applied to predict the response of Duffing–van der Pol oscillator under both external and parametric excitations of wide-band stationary random processes. The analytical stationary probability density is verified by digital simulation and the factors affecting the accuracy of the procedure are analyzed. The proposed procedure is also applied to study the asymptotic stability in probability and stochastic Hopf bifurcation of Duffing–van der Pol oscillator under parametric excitations of wide-band stationary random processes in both stiffness and damping terms. The stability conditions and bifurcation parameter are simply determined by examining the asymptotic behaviors of averaged square-root of total energy and averaged total energy, respectively, at its boundaries. It is shown that the stability analysis using linearized equation is correct only if the linear stiffness term does not vanish.  相似文献   

7.
Chakraborty  G.  Mallik  A. K. 《Nonlinear dynamics》1998,17(4):301-324
The effects of parametric excitation on a traveling beam, both with and without an external harmonic excitation, have been studied including the non-linear terms. Non-linear, complex normal modes have been used for the response analysis. Detailed numerical results are presented to show the effects of non-linearity on the stability of the parametrically excited system. In the presence of both parametric and external harmonic excitations, the response characteristics are found to be similar to that of a Duffing oscillator. The results are sensitive to the relative strengths of and the phase difference between the two forms of excitations.  相似文献   

8.
随机干扰与随机参数激励联合作用下的Hopf分叉   总被引:1,自引:0,他引:1  
陈予恕  曹庆杰 《力学学报》1993,25(4):411-418
本文研究van der Pol-Duffing型的非线性振子在随机干扰和随机参数联合作用下的Hopf分叉现象。本文所得结果证实了当系统处在于Hopf分叉点附近时,对系统的参数的变化具有敏感性。在研究过程中,我们利用Markov扩散过程逼近系统的随机响应,得到了沿稳定矩的概率1稳定和矩稳定的条件。对于非线性振子,我们得到了振幅过程的稳态概论密度函数。研究发现,确定性系统的Hopf分叉点在随机参数作用下具有漂移现象,这种漂移是由系统的性质所决定的,当分叉点为超临界的,分叉点向前漂移;而当分叉点为亚临界时,这种漂移是向后的。当系统处在外部随机干扰作用下时,系统出现非零响应。另外我们发现,稳态矩的分叉与其阶数无关。  相似文献   

9.
The paper addresses the dynamic stability of random systems. The dynamic stability bounds are established on the basis of the definition of stability with respect to moment functions. The differential equations for these functions are derived by approximating an exponentially correlated normal random process by a random process with a finite number of states. These results are shown to agree with the well-known results for parametric white noise excitation  相似文献   

10.
Local bifurcation theory of nonlinear systems with parametric excitation   总被引:1,自引:0,他引:1  
This paper summarizes the authors' research on local bifurcation theory of nonlinear systems with parametric excitation since 1986. The paper is divided into three parts. The first one is the local bifurcation problem of nonlinear systems with parametric excitation in cases of fundamental harmonic, subharmonic and superharmonic resonance. The second one is the experiment investigation of local bifurcation solutions in nonlinear systems with parametric excitation. The third one is the universal unfolding study of periodic bifurcation solutions in the nonlinear Hill system, where the influence of every physical parameter on the periodic bifurcation solution is discussed in detail and all the results may be applied to engineering.  相似文献   

11.
本文将太阳引力摄动视为受摄不规则小行星系统的组成部分,借鉴非线性振动理论中参数激励共振的概念,创新性地设计了不规则小行星平衡点附近稳定的悬停观测轨道.为了同时考虑不规则小行星引力和太阳引力, 本文采用受摄粒杆模型描述系统.通过对未扰系统平衡点以及固有频率的分析, 给出系统存在参激共振轨道的条件.再以第二类参激主共振和1:3内共振为例,采用多尺度方法求得参数激励共振轨道的稳态解, 并对稳态解的稳定性进行判断.通过受摄小行星系统的幅频响应曲线以及力频响应曲线分析了系统的非线性特性以及参数激励效应.此外, 对内共振引起的长短周期能量转移现象进行了分析.本文的研究成果可以拓展现有小行星系统周期轨道族设计方法.  相似文献   

12.
耦合Duffing-van der Pol系统的首次穿越问题   总被引:2,自引:0,他引:2  
徐伟  李伟  靳艳飞  赵俊锋 《力学学报》2005,37(5):620-626
利用拟不可积Hamilton系统随机平均法,研究了高斯白噪声激励下耦 合Duffing-van der Pol系统的首次穿越问题. 首先给出了条件可靠性函数满足的后向 Kolmogorov 方程以及首次穿越时间条件矩满足的广义Pontryagin方程. 然后根据 这两类偏微分方程的边界条件和初始条件,详细分析了在外激与参激共 同作用以及纯外激作用等情况下系统的可靠性与首次穿越时间的各阶矩. 最后以图表形式给 出了可靠性函数、首次穿越时间的概率密度以及平均首次穿越时间的数值结果.  相似文献   

13.
拟可积哈密顿系统中噪声诱发的混沌运动   总被引:4,自引:0,他引:4  
甘春标  郭乙木 《力学学报》2000,32(5):613-620
研究拟可积哈密顿系统在谐和与噪声激励联合作用下的混沌运动。通过对噪声性质的假定,并利用动力系统理论,给出了高维梅尔尼科夫方法应用于随机拟可积哈密顿系统的推广形式。根据这种推广的方法,研究了谐和与高斯白噪声激励联合使用下两自由度拟可积哈密顿系统 同宿分岔,得出了系统发生混沌运动的参数阈值,并由此讨论了噪声对系统的混沌运动的影响。蒙特-卡罗方法模拟、李雅普诺夫指数等数值结果表明,这种推广的方法是有效的。  相似文献   

14.
The dynamic stability of a coupled two-degrees-of-freedom system subjected to parametric excitation by a harmonic action superimposed by an ergodic stochastic process is investigated. For the stability analysis, the method of moment functions is used. Explicit expressions for the stability of the second moments are obtained when the frequency of the harmonic excitation lies in the vicinity of the combination sum of the natural frequencies. Good agreement between the analytical and numerical results is obtained. As an application, the example of the flexural-torsional instability of a thin elastic beam under dynamic loading is considered  相似文献   

15.
The primary objective of this paper is to examine the random response characteristics of coupled nonlinear oscillators in the presence of single and simultaneous internal resonances. A model of two coupled beams with nonlinear inertia interaction is considered. The primary beam is directly excited by a random support motion, while the coupled beam is indirectly excited through autoparametric coupling and parametric excitation. For a single one-to-two internal resonance, we used Gaussian and non-Gaussian closures, Monte Carlo simulation, and experimental testing to predict and measure response statistics and stochastic bifurcation in the mean square. The mean square stability boundaries of the coupled beam equilibrium position are obtained by a Gaussian closure scheme. The stochastic bifurcation of the coupled beam is predicted theoretically and experimentally. The stochastic bifurcation predicted by non-Gaussian closure is found to take place at a lower excitation level than the one predicted by Gaussian closure and Monte Carlo simulation. It is also found that above a certain excitation level, the solution obtained by non-Gaussian closure reveals numerical instability at much lower excitation levels than those obtained by Gaussian and Monte Carlo approaches. The experimental observations reveal that the coupled beam does not reach a stationary state, as reflected by the time evolution of the mean square response. For the case of simultaneous internal resonances, both Gaussian and non-Gaussian closures fail to predict useful results, and attention is focused on Monte Carlo simulation and experimental testing. The effects of nonlinear coupling parameters, internal detuning ratios, and excitation spectral density level are considered in both investigations. It is found that both studies reveal common nonlinear features such as bifurcations in the mean square responses of the coupled beam and modal interaction in the neighborhood of internal resonances. Furthermore, there is an upper limit for the excitation level above which the system experiences unbounded response in the neighborhood of simultaneous internal resonances.  相似文献   

16.
The nonlinear response of a two-degree-of-freedom nonlinear oscillating system to parametric excitation is examined for the case of 1∶2 internal resonance and, principal parametric resonance with respect to the lower mode. The method of multiple scales is used to derive four first-order autonomous ordinary differential equations for the modulation of the amplitudes and phases. The steadystate solutions of the modulated equations and their stability are investigated. The trivial solutions lose their stability through pitchfork bifurcation giving rise to coupled mode solutions. The Melnikov method is used to study the global bifurcation behavior, the critical parameter is determined at which the dynamical system possesses a Smale horseshoe type of chaos. Project supported by the National Natural Science Foundation of China (19472046)  相似文献   

17.
A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled strongly non-linear systems under wide-band random excitation using generalized harmonic functions. Then, the dynamical programming equation for the saturated control problem is formulated from the partially averaged Itō equation based on the dynamical programming principle. The optimal control consisting of the unbounded optimal control and the bounded bang-bang control is determined by solving the dynamical programming equation. Finally, the response of the optimally controlled system is predicted by solving the reduced Fokker-Planck-Kolmogorov (FPK) equation associated with the completed averaged Itō equation. An example is given to illustrate the proposed control strategy. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and the chattering is reduced significantly comparing with the bang-bang control strategy.  相似文献   

18.
韩维  金栋平  胡海岩 《力学学报》2003,35(3):303-309
研究两自由度参数激励系统的非线性动力学与控制问题.利用Lagrange方程建立含反馈控制的参激捅及其驱动机构组成的系统动力学方程,以多尺度方法获得一阶近似控制方程.然后,对系统受一阶摸态参激主共振与一、二阶模态间3:1内共振联合作用下的幅额响应及其稳定性,以及反馈参数对系统稳态行为的影响作了详细分析.结果表明,响应的稳定域位置和大小取决于位移反馈,位移立方反馈改变了系统的非线性程度,速度反馈类似于阻尼,可使系统呈现自激振动特性.  相似文献   

19.
The stochastic averaging procedure in a complex-variable setting, used previously by Ariaratnam and Tarn to analyze a linear system under random parametric excitation, is extended to non-linear systems under both parametric and external random excitations. It is shown that equations for the moments of the system response, while still constituting an infinite hierarchy, form a simpler pattern compared with the corresponding equations obtained from the usual amplitude and phase formulation. From this simpler pattern, it is possible to identify those moments which tend to zero at the stationary state. Furthermore, a much smaller number of equations needs to be solved when the infinite hierarchy is truncated to calculate approximately the non-zero moments.  相似文献   

20.
Zhang  C. Y.  Zhu  C. M.  Lin  Z. Q.  Wu  T. X. 《Nonlinear dynamics》2004,37(1):1-18
The parametrically excited lateral vibration of a mass-loaded string is investigated in this paper. Supposing that the mass at the lower end of the string is subjected to a vertical harmonic excitation and neglecting the higher-order vibration modes, the equation of motion for the mass-loaded string can be represented by a Mathieu's equation with cubic nonlinearity. Based on the stability criterion for Mathieu's equation, the critical conditions inducing parametric resonance are clarified. Theoretical analysis shows that when the natural frequency f s of the string lateral vibration and the vertical excitation frequency f satisfy f s= (n/2)f, n= 1, 2, 3, ..., parametric resonance occurs in the case of no damping. For a damped system, parametric resonance most likely occurs when f is close to 2f s, and depends on the damping of the system and the vertical excitation. The critical excitation has been derived at different frequencies. If the natural frequency of the mass vertical vibration happens to be twice that of the string lateral vibration, the parametric resonance may occur due to a small disturbance. Numerical simulations show that the lateral vibration of the string does not increase infinitely at parametric resonance because the parametric excitation is self-tuned due to the coupling between the vertical and lateral vibrations. Finally, the theoretical results are supported by some experimental work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号