首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrophilic interaction chromatography (HILIC) is valuable alternative to reversed-phase liquid chromatography separations of polar, weakly acidic or basic samples. In principle, this separation mode can be characterized as normal-phase chromatography on polar columns in aqueous-organic mobile phases rich in organic solvents (usually acetonitrile). Highly organic HILIC mobile phases usually enhance ionization in the electrospray ion source of a mass spectrometer, in comparison to mobile phases with higher concentrations of water generally used in reversed-phase (RP) LC separations of polar or ionic compounds, which is another reason for increasing popularity of this technique. Various columns can be used in the HILIC mode for separations of peptides, proteins, oligosaccharides, drugs, metabolites and various natural compounds: bare silica gel, silica-based amino-, amido-, cyano-, carbamate-, diol-, polyol-, zwitterionic sulfobetaine, or poly(2-sulphoethyl aspartamide) and other polar stationary phases chemically bonded on silica gel support, but also ion exchangers or zwitterionic materials showing combined HILIC-ion interaction retention mechanism. Some stationary phases are designed to enhance the mixed-mode retention character. Many polar columns show some contributions of reversed phase (hydrophobic) separation mechanism, depending on the composition of the mobile phase, which can be tuned to suit specific separation problems. Because the separation selectivity in the HILIC mode is complementary to that in reversed-phase and other modes, combinations of the HILIC, RP and other systems are attractive for two-dimensional applications. This review deals with recent advances in the development of HILIC phase separation systems with special attention to the properties of stationary phases. The effects of the mobile phase, of sample structure and of temperature on separation are addressed, too.  相似文献   

2.
Hydrophilic interaction chromatography (HILIC) is becoming increasingly popular for separation of polar samples on polar columns in aqueous-organic mobile phases rich in organic solvents (usually ACN). Silica gel with decreased surface concentration of silanol groups, or with chemically bonded amino-, amido-, cyano-, carbamate-, diol-, polyol-, or zwitterionic sulfobetaine ligands are used as the stationary phases for HILIC separations, in addition to the original poly(2-sulphoethyl aspartamide) strong cation-exchange HILIC material. The type of the stationary and the composition of the mobile phase play important roles in the mixed-mode HILIC retention mechanism and can be flexibly tuned to suit specific separation problems. Because of excellent mobile phase compatibility and complementary selectivity to RP chromatography, HILIC is ideally suited for highly orthogonal 2-D LC-LC separations of complex samples containing polar compounds, such as peptides, proteins, oligosaccharides, drugs, metabolites and natural compounds. This review attempts to present an overview of the HILIC separation systems, possibilities for their characterization and emerging HILIC applications in 2-D off-line and on-line LC-LC separations of various samples, in combination with RP and other separation modes.  相似文献   

3.
Hydrophilic interaction liquid chromatography (HILIC) provides an alternative approach to effectively separate small polar compounds on polar stationary phases. The purpose of this work was to review the options for the characterization of HILIC stationary phases and their applications for separations of polar compounds in complex matrices. The characteristics of the hydrophilic stationary phase may affect and in some cases limit the choices of mobile phase composition, ion strength or buffer pH value available, since mechanisms other than hydrophilic partitioning could potentially occur. Enhancing our understanding of retention behavior in HILIC increases the scope of possible applications of liquid chromatography. One interesting option may also be to use HILIC in orthogonal and/or two-dimensional separations. Bioapplications of HILIC systems are also presented.  相似文献   

4.
Polar columns used in the HILIC (Hydrophilic Interaction Liquid Chromatography) systems take up water from the mixed aqueous–organic mobile phases in excess of the water concentration in the bulk mobile phase. The adsorbed water forms a diffuse layer, which becomes a part of the HILIC stationary phase and plays dominant role in the retention of polar compounds. It is difficult to fix the exact boundary between the diffuse stationary and the bulk mobile phase, hence determining the column hold-up volume is subject to errors. Adopting a convention that presumes that the volume of the adsorbed water can be understood as the column stationary phase volume enables unambiguous determination of the volumes of the stationary and of the mobile phases in the column, which is necessary for obtaining thermodynamically correct chromatographic data in HILIC systems. The volume of the aqueous stationary phase, Vex, can be determined experimentally by frontal analysis combined with Karl Fischer titration method, yielding isotherms of water adsorbed on polar columns, which allow direct prediction of the effects of the composition of aqueous–organic mobile phase on the retention in HILIC systems, and more accurate determination of phase volumes in columns and consistent retention data for any mobile phase composition. The n phase volume ratios of 18 columns calculated according to the new phase convention strongly depend on the type of the polar column. Zwitterionic and TSK gel amide and amine columns show especially strong water adsorption.  相似文献   

5.
The retention mechanism and chromatographic behavior for different polar analytes under hydrophilic interaction chromatography (HILIC) conditions have been studied by application of different mobile phases and stationary phases to various analytes at different temperatures. In addition to the commonly accepted mechanism of analyte liquid-liquid partitioning between mobile phase and water-enriched solvent layer which is partially immobilized onto the surface of the stationary phase, hydrogen-bonding, hydrophobic interaction, and ion-exchange interactions may also be involved. The predominant retention mechanism in HILIC separation is not always easily predictable. It can depend not only on the characteristics of the analytes but also on the selection of mobile and stationary phase compositions. The objective of this review is to evaluate the potential application of column temperature and mobile phase composition toward improving HILIC selectivity. The functional groups from analyte structures, stationary phase materials and organic mobile phase solvents will be highlighted.  相似文献   

6.
亲水作用色谱固定相及其在中药分离中的应用   总被引:4,自引:0,他引:4  
郭志谋  张秀莉  徐青  梁鑫淼 《色谱》2009,27(5):675-681
亲水作用色谱(HILIC)作为一种分离极性化合物的液相色谱模式,近年来越来越受到关注和重视。一方面是因为强极性化合物的分离问题引起了各个研究领域的重视,如药物分析、代谢组学、蛋白质组学等研究领域都不同程度地涉及强极性化合物的分离问题;另一方面是由于HILIC具有流动相组成简单、分离效率较高、与质谱兼容以及反压较低等优势。固定相是HILIC发展和应用的基础,本文主要从固定相分子结构的角度对HILIC固定相的结构特征、保留特性以及应用概况等进行了综述。对传统正相色谱固定相用于HILIC以及专门设计的HILIC固定相进行了介绍,评述了各自的优缺点和应用概况;对近年来HILIC固定相在中药分离中的应用进行了介绍;并对HILIC固定相的发展进行了展望。  相似文献   

7.
A stationary phase composed of silica-bonded sulfonated cyclofructan 6 (SCF6) was synthesized and evaluated for hydrophilic interaction chromatography (HILIC). The separation of a large variety of polar compounds was evaluated on different versions of the stationary phase and compared with the same separations obtained with commercially available HILIC columns. The new columns successfully separate polar and hydrophilic compounds including β blockers, xanthines, salicylic acid related compounds, nucleic acid bases, nucleosides, maltooligosaccharides, water soluble vitamins and amino acids. The separation conditions were optimized by changing the composition and the pH of the mobile phase. The dependence of analyte retention on temperature was studied using van't Hoff plots. The newly synthesized stationary phase showed broad applicability for HILIC mode separations.  相似文献   

8.
The most separations in HILIC mode are performed on silica-based supports. Nevertheless, recently published results have indicated that the metal oxides stationary phases also possess the ability to interact with hydrophilic compounds under HILIC conditions. This paper primarily describes the retention behaviour of model hydrophilic analytes (4-aminobenzene sulfonic acid, 4-aminobenzoic acid, 4-hydroxybenzoic acid, 3,4-diaminobenzoic acid, 3-aminophenol and 3-nitrophenol) on the polybutadine modified zirconia in HILIC. The results were simultaneously compared with a bare zirconia and a silica-based HILIC phase. The mobile phase strength, pH and the column temperature were systematically modified to assess their impact on the retention of model compounds. It was found that the retention of our model hydrophilic analytes on both zirconia phases was mainly governed by adsorption while on the silica-based HILIC phase partitioning was primarily involved. The ability of ligand-exchange interactions of zirconia surface with a carboxylic moiety influenced substantially the response of carboxylic acids on the elevated temperature as well as to the change of the mobile phase pH in contrast to the silica phase. However, no or negligible ligand-exchange interactions were observed for sulfanilic acid. The results of this study clearly demonstrated the ability of modified zirconia phase to retain polar acidic compounds under HILIC conditions, which might substantially enlarge the application area of the zirconia-based stationary phases.  相似文献   

9.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an octylsiloxane-bonded (Kinetex C8) and diisobutyloctadecylsiloxane-bonded (Kinetex XB-C18) superficially porous silica stationary phases for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not for methanol–water mobile phases. Compared with an octadecylsiloxane-bonded silica stationary phase (Kinetex C18) retention is reduced due to a less favorable phase ratio for both the octylsiloxane-bonded and diisobutyloctadecylsiloxane-bonded silica stationary phases while selectivity differences are small and solvent dependent. Selectivity differences for neutral compounds are larger for methanol–water but significantly suppressed for acetonitrile–water mobile phases. The selectivity differences arise from small changes in all system constants with solute size and hydrogen-bond basicity being the most important due to their dominant contribution to the retention mechanism. Exchanging the octadecylsiloxane-bonded silica column for either the octylsiloxane-bonded or diisobutyloctadecylsiloxane-bonded silica column affords little scope for extending the selectivity space and is restricted to fine tuning of separations, and in some cases, to obtain faster separations due to a more favorable phase ratio. For weak bases larger differences in relative retention are expected with acetonitrile–water mobile phases on account of the additional cation exchange interactions possible that are absent for the octadecylsiloxane-bonded silica stationary phase.  相似文献   

10.
(R,S)-Hydroxypropyl-modified β-cyclodextrin (RSP-CD) is a well-known chiral stationary phase. In this work, hydrophilic interaction liquid chromatographic (HILIC) selectivities of RSP-CD was demonstrated. Further, an evaluation of chromatographic performances of fully porous particles (FPPs)- and superficially porous particles (SPPs)-based RSP-CD stationary phases was performed. The RSP-CD-bonded SPP-based stationary phase showed faster and more efficient HILIC separations compared to the FPP-based stationary phases. In addition, the SPP-based RSP-CD stationary phase showed excellent selectivities for many classes of small polar molecules. Since the SPP-based stationary phase is allowed for separations performed at high flow rates without significant loss of efficiency, ultrafast separations (analysis times under 1 min) also was accomplished utilizing SPP-based RSP-CD stationary phase.  相似文献   

11.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on phenylhexylsiloxane- and pentafluorophenylpropylsiloxane-bonded superficially porous silica stationary phases (Kinetex Phenyl-Hexyl and Kinetex F5) for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation exchange) are important for the retention of weak bases for acetonitrile–water mobile phases, but virtually absent for the same compounds for methanol–water mobile phases. The selectivity of the Kinetex Phenyl-Hexyl stationary phase for small neutral compounds is similar to an octadecylsiloxane-bonded silica stationary phase with similar morphology Kinetex C-18 for both methanol–water and acetonitrile–water mobile phase compositions. The Kinetex Phenyl-Hexyl and XBridge Phenyl stationary phases with the same topology but different morphology are selectivity equivalent, confirming that solvation of the interphase region can be effective at dampening selectivity differences for modern stationary phases. Small selectivity differences observed for XTerra Phenyl (different morphology and topology) confirm previous reports that the length and type of space arm for phenylalkylsiloxane-bonded silica stationary phases can result in small changes in selectivity. The pentafluorophenylpropylsiloxane-bonded silica stationary phase (Kinetex F5) has similar separation properties to the phenylhexylsiloxane-bonded silica stationary phases, but is not selectivity equivalent. However, for method development purposes, the scope to vary separations from an octadecylsiloxane-bonded silica stationary phase (Kinetex C-18) to “phenyl phase” of the types studied here is limited for small neutral compounds. In addition, selectivity differences for the above stationary phases are enhanced by methanol–water and largely suppressed by acetonitrile–water mobile phases. For bases, larger selectivity differences are possible for the above stationary phases if electrostatic interactions are exploited, especially for acetonitrile-containing mobile phases.  相似文献   

12.
用天  吴凡  肖红斌  万伯顺 《色谱》2015,33(9):910-916
利用-NCO和-OH的加成反应,通过简单的两步反应将木糖醇和麦芽糖醇成功地键合于硅胶表面,制备了两种新型糖醇类亲水作用色谱固定相。流动相中乙腈含量对保留的影响曲线表明,这两种糖醇固定相具有典型的亲水作用色谱固定相性质,对极性和亲水性化合物有很强的保留作用。利用这两种固定相成功分离了水溶性维生素、水杨酸及其类似物、碱基及其相应的核苷和淫羊藿苷类似物等模型混合物,同时糖醇固定相展现了新颖的选择性,特别是相对于线形的木糖醇键合固定相,非线形的麦芽糖醇键合固定相表现出了对糖基的独特保留能力。此外,缓冲盐的pH和浓度对保留的影响表明静电作用在这两种糖醇固定相的保留机理中也发挥着一定的作用。本文所发展的糖醇类固定相具有良好的分离性能,有望在亲水作用色谱分离领域发挥潜在的应用价值。  相似文献   

13.
硅胶色谱柱的亲水作用保留机理及其影响因素   总被引:1,自引:0,他引:1  
李瑞萍  袁琴  黄应平 《色谱》2014,32(7):675-681
亲水作用色谱(HILIC)是替代反相色谱(RPLC)分离强极性及亲水性化合物的另一色谱模式,其分离机理与RPLC有很大不同,具有和RPLC互补的选择性。在HILIC模式中,采用正相色谱(NPLC)中的极性固定相及含高浓度有机溶剂(通常为乙腈)的水溶液为流动相。硅胶是开发最早、研究最为深入及应用最为广泛的HILIC固定相,本文介绍了硅胶色谱柱的HILIC保留机理,详细概述了操作条件如硅胶柱类型、流动相组成及柱温对HILIC分离的影响,并对硅胶填料色谱柱的HILIC模式的发展方向与应用前景进行了展望。  相似文献   

14.
以甲基丙烯酰氧乙基二甲基乙酸铵(CBMA)为功能单体,利用表面引发原子转移自由基聚合(Surface-initiated atom transfer radical polymerization, SI-ATRP)技术,将CBMA接枝到硅胶表面,得到接枝聚合物CBMA的亲水作用色谱固定相(Silica-CBMA).通过改变SI-ATRP反应体系中单体的浓度,制备了3种不同接枝量的亲水作用色谱固定相.考察了Silica-CBMA固定相对有机酸类化合物的分离性能以及流动相中pH值、盐浓度、水含量等因素对溶质保留行为的影响.结果表明,在亲水作用色谱模式下,Silica-CBMA固定相对有机酸类化合物的分离是离子交换作用与亲水作用的混合色谱模式.流动相中盐浓度增大,溶质保留减弱,符合离子交换作用特征;固定相和溶质的离子化程度受流动相pH值影响较大,pH值增大,溶质保留增强;而溶质的保留时间随流动相水含量增加而降低则是典型的亲水作用色谱特征.使用自制Silica-CBMA柱,建立了芦丁片中维生素C、芦丁含量的亲水作用色谱测定方法,操作方法简单,为强极性样品的分离测定提供了新方法.  相似文献   

15.
Sta&#;kov&#;  Magda  Jandera  Pavel 《Chromatographia》2016,79(11):657-666

In-house prepared zwitterionic polymethacrylate micro-columns using in situ polymerization of N,N-dimethyl-N-metacryloxyethyl-N-(3-sulfopropyl) ammonium betaine (MEDSA) functional monomer with bisphenol A glycerolate dimethacrylate (BIGDMA) cross-linker provided excellent stability and reproducibility of preparation and separation efficiency of 60,000–70,000 theoretical plates m−1 for small molecules under isocratic conditions. The column showed a dual retention mechanism, reversed-phase (RP) in highly aqueous mobile phases and aqueous normal-phase (HILIC) in acetonitrile-rich mobile phases. This property can be used to obtain complementary separation and combined information on the sample from repeated injections of a sample on a single column, in different mobile phases characteristic for the HILIC and for the RP modes, which is in fact a form of offline two-dimensional chromatography on a single column. The dual retention mechanism has been observed with a variety of columns, however, often with impractically narrow retention range in one of the two modes. To take full advantage from the combined single-column RP–HILIC experiments, the column should provide a sufficiently broad mobile phase interval both in the RP and in the HILIC mode. The BIGDMA-MEDSA micro-columns proved suitable earlier for the combined RP–HILIC separations of some phenolic compounds and flavonoids. In the present work, we investigated the effects of the mobile phase composition on the retention of a variety of polar compounds over full retention range of buffered aqueous acetonitrile mobile phases, to find potentially useful HILIC and RP retention ranges for barbiturates, sulfonamides, nucleosides and nucleic bases. In the HILIC mode, proton donor–acceptor interactions show a major effect on retention and selectivity of separation, whereas the size of the non-polar hydrocarbon part of the sample molecule is the most important factor in the water-rich mobile phases. The sample structure strongly affects the composition of aqueous–organic mobile phases at which the transition between the two retention modes occurs. Of the investigated sample types, barbiturates show better separation under reversed-phase conditions, whereas nucleosides and nucleic bases in the HILIC mode. Aromatic carboxylic acids and sulfonamides can be separated either in the reversed phase or under HILIC conditions, the two separation modes showing complementary selectivity of separation.

  相似文献   

16.
Small organic acids have shown significant retention on various stationary phases, such as amide, amino, aspartamide, silica and sulfobetaine phase commonly used in hydrophilic interaction chromatography (HILIC). This study investigated the effect of chromatographic conditions on the retention behavior of organic acids in HILIC using the tool of design of experiment (DOE). The results of the DOE study indicated that both the content of organic solvent (i.e., acetonitrile) and salt concentration in the mobile phase had significant effects on the retention of organic acids. Higher content of organic solvent in the mobile phase led to a significant increase in retention on all types of stationary phases. Increasing salt concentration also resulted in a moderate increase in retention; however, the effect of salt concentration varied with the type of stationary phase. The study also revealed that column temperature had less impact on retention than organic solvent content and salt concentration in HILIC.  相似文献   

17.
A stationary phase composed of silica-bonded cyclofructan 6 (FRULIC-N) was evaluated for the separation of four cyclic nucleotides, six nucleoside monophosphates, four nucleoside diphosphates, and five nucleoside triphosphates via hydrophilic interaction chromatography (HILIC) in both isocratic and gradient conditions. The gradient conditions gave significantly better separations by narrowing peak widths. Sixteen out of nineteen nucleotides were baseline separated on the FRULIC-N column in one run. Unlike other known HILIC stationary phases, there can be dual-retention mechanisms unique to this media. Traditional hydrogen bonding/dipolar interactions can be supplemented by dynamic ion interaction effects for anionic analytes. This occurs because the FRULIC-N stationary phase is able to bind certain buffer cations. The extent of the ion interaction is tunable, in comparison to stationary phases with embedded charged groups, where the inherent ionic properties are fixed. The best mobile phase conditions were determined by varying the organic modifier (acetonitrile) content, as well as salt type/concentration and electrolyte pH. The thermodynamic characteristic of the FRULIC-N column was investigated by evaluating the column temperature effect on retention and utilizing van’t Hoff plots. This study shows that there is a greater entropic contribution for the retention of nucleotide di and triphosphates, whereas there is a greater enthalphic contribution for the cyclic nucleotides with the FRULIC-N column.  相似文献   

18.
Separation efficiencies in hydrophilic interaction chromatography   总被引:2,自引:0,他引:2  
Hydrophilic interaction chromatography (HILIC) is important for the separation of highly polar substances including biologically active compounds, such as pharmaceutical drugs, neurotransmitters, nucleosides, nucleotides, amino acids, peptides, proteins, oligosaccharides, carbohydrates, etc. In the HILIC mode separation, aqueous organic solvents are used as mobile phases on more polar stationary phases that consist of bare silica, and silica phases modified with amino, amide, zwitterionic functional group, polyols including saccharides and other polar groups. This review discusses the column efficiency of HILIC materials in relation to solute and stationary phase structures, as well as comparisons between particle-packed and monolithic columns. In addition, a literature review consisting of 2006-2007 data is included, as a follow up to the excellent review by Hemstr?m and Irgum.  相似文献   

19.
成晓东  冯钰锜 《色谱》2015,33(9):917-921
利用巯基与乙烯基的"点击化学"反应合成了一种新型含多羟基的硅烷偶联剂,再将其与硅胶反应制得含多羟基的亲水固定相。经过元素分析表征证明多羟基官能团已成功键合到硅胶表面。采用一系列不同性质的标准物质考察了亲水色谱模式下固定相的溶质保留机理。由于固定相结构中既具有极性多羟基官能团,也有短的疏水碳链,因此固定相兼具疏水性与亲水性。将此固定相成功应用于亲水与反相色谱两种模式,并对比了两种模式下流速对柱效的影响。最后将固定相应用于烷基苯、水溶性维生素以及核苷的分离中,取得了较好的分离效果,证明了固定相良好的应用前景。  相似文献   

20.
Unusual effects of separation conditions on chiral separations   总被引:4,自引:0,他引:4  
Unusual effects in liquid chromatographic separations of enantiomers on chiral stationary phases are reviewed with emphasis on polysaccharide phases. On protein phases and Pirkle phases reversal of the elution order between enantiomers due to variation of temperature and mobile phase composition has been reported. Most of the nonanticipated observations have dealt with the widely used polysaccharide phases. Reversed retention order and other stereoselective effects have been observed by variation of temperature, organic modifier and water content in nonpolar organic mobile phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号