首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let v,k, and n be positive integers. An incomplete perfect Mendelsohn design, denoted by k-IPMD(v,n), is a triple (X, Y, ??) where X is a v-set (of points), Y is an n-subset of X, and ?? is a collection of cyclically ordered k-subsets of X (called blocks) such that every ordered pair (a, b) ∈ (X × X)?(Y × Y) appears t-apart in exactly one block of ?? and no ordered pair (a,b) ∈ Y × Y appears in any block of ?? for any t, where 1 ≤ tk ? 1. In this article, we obtain conclusive results regarding the existence of 4-IPMD(v,7) where the necessary conditions are v = 2 or 3(mod 4) and v ≥ 22. We also provide an application to the problem relating to coverings of PMDs with block size 4. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Let v, k, and n be positive integers. An incomplete perfect Mendelsohn design, denoted by k-IPMD(v, n), is a triple (X, Y, ??) where X is a v-set (of points), Y is an n-subset of X, and ?? is a collection of cyclically ordered k-subsets of X (called blocks) such that every ordered pair (a, b) ∈ (X × X)\(Y × Y) appears t-apart in exactly one block of ?? and no ordered pair (a,b) ∈ Y × Y appears in any block of ?? for any t, where 1 ≤ tk ? 1. In this article, the necessary conditions for the existence of a 4-IPMD(v, n), namely (v ? n) (v ? 3n ? 1) ≡ 0 (mod 4) and v3n + 1, are shown to be sufficient for the case n = 3. For the case n = 2, these conditions are sufficient except for v = 7 and with the possible exception of v = 14,15,18,19,22,23,26,27,30. The latter result provides a useful application to the problem relating to the packing of perfect Mendelsohn designs with block size 4. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
A digraph G = (V, E) is primitive if, for some positive integer k, there is a uv walk of length k for every pair u, v of vertices of V. The minimum such k is called the exponent of G, denoted exp(G). The exponent of a vertex uV, denoted exp(u), is the least integer k such that there is a uv walk of length k for each vV. For a set XV, exp(X) is the least integer k such that for each vV there is a Xv walk of length k, i.e., a uv walk of length k for some uX. Let F(G, k) : = max{exp(X) : |X| = k} and F(n, k) : = max{F(G, k) : |V| = n}, where |X| and |V| denote the number of vertices in X and V, respectively. Recently, B. Liu and Q. Li proved F(n, k) = (nk)(n − 1) + 1 for all 1 ≤ kn − 1. In this article, for each k, 1 ≤ kn − 1, we characterize the digraphs G such that F(G, k) = F(n, k), thereby answering a question of R. Brualdi and B. Liu. We also find some new upper bounds on the (ordinary) exponent of G in terms of the maximum outdegree of G, Δ+(G) = max{d+(u) : uV}, and thus obtain a new refinement of the Wielandt bound (n − 1)2 + 1. © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 215–225, 1998  相似文献   

4.
For positive integers t?k?v and λ we define a t-design, denoted Bi[k,λ;v], to be a pair (X,B) where X is a set of points and B is a family, (Bi:i?I), of subsets of X, called blocks, which satisfy the following conditions: (i) |X|=v, the order of the design, (ii) |Bi|=k for each i?I, and (iii) every t-subset of X is contained in precisely λ blocks. The purpose of this paper is to investigate the existence of 3-designs with 3?k?v?32 and λ>0.Wilson has shown that there exists a constant N(t, k, v) such that designs Bt[k,λ;v] exist provided λ>N(t,k,v) and λ satisfies the trivial necessary conditions. We show that N(3,k,v)=0 for most of the cases under consideration and we give a numerical upper bound on N(3, k, v) for all 3?k?v?32. We give explicit constructions for all the designs needed.  相似文献   

5.
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 ≤ kn/2, and deg(u) + deg(v) ≥ n + (3k − 9)/2 for every pair u, v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree conditions are also given for k-ordered hamiltonicity. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 199–210, 2003  相似文献   

6.
A Mendelsohn design MD(v, k, λ) is a pair (X, B) where X is a v-set together with a collection B of cyclic k-tuples from X such that each ordered pair from X, as adjacent entries, is contained in exactly λk-tuples of B. An MD(v, k, λ) is said to be self-converse, denoted by SCMD(v, k, λ) = (X, B, f), if there is an isomorphic mapping from (X, B) to (X, B−1), where B−1 = {B−1 = 〈xk, xk−1, … x2, x1〉; B = 〈x1, … ,xk〉 ∈ B.}. The existence of SCMD(v, 3, λ) and SCMD(v, 4, 1) has been settled by us. In this article, we will investigate the existence of SCMD(v, 4t + 2, 1). In particular, when 2t + 1 is a prime power, the existence of SCMD(v, 4t + 2, 1) has been completely solved, which extends the existence results for MD(v, k, 1) as well. © 1999 John Wiley & Sons, Inc. J. Combin Designs 7: 283–310, 1999  相似文献   

7.
The purpose of this paper is to study bifurcation points of the equation T(v) = L(λ,v) + M(λ,v), (λ,v) ? Λ × D in Banach spaces, where for any fixed λ ? Λ, T, L(λ,·) are linear mappings and M(λ,·) is a nonlinear mapping of higher order, M(λ,0) = 0 for all λ ? Λ. We assume that λ is a characteristic value of the pair (T, L) such that the mapping TL(λ ,·) is Fredholm with nullity p and index s, p > s ? 0. We shall find some sufficient conditions to show that (λ ,0) is a bifurcation point of the above equation. The results obtained will be used to consider bifurcation points of the axisymmetric buckling of a thin spherical shell subjected to a uniform compressive force consisting of a pair of coupled non-linear ordinary differential equations of second order.  相似文献   

8.
Let M = {m1, m2, …, mh} and X be a v-set (of points). A holey perfect Mendelsohn designs (briefly (v, k, λ) - HPMD), is a triple (X, H, B), where H is a collection of subsets of X (called holes) with sizes M and which partition X, and B is a collection of cyclic k-tuples of X (called blocks) such that no block meets a hole in more than one point and every ordered pair of points not contained in a hole appears t-apart in exactly λ blocks, for 1 ≤ tk − 1. The vector (m1, m2, …, mh) is called the type of the HPMD. If m1 = m2 = … = mh = m, we write briefly mh for the type. In this article, it is shown that the necessary condition for the existence of a (v, 4, λ) - HPMD of type mh, namely, is also sufficient with the exception of types 24 and 18 with λ = 1, and type m4 for odd m with odd λ. © 1997 John Wiley & Sons, Inc. J Combin Designs 5: 203–213, 1997  相似文献   

9.
Let v and k be positive integers. A (v, k, 1)-packing design is an ordered pair (V, B) where V is a v-set and B is a collection of k-subsets of V (called blocks) such that every 2-subset of V occurs in at most one block of B. The packing problem is mainly to determine the packing number P(k, v), that is, the maximum number of blocks in such a packing design. It is well known that P(k, v) ≤ ⌊v⌊(v − 1)/(k − 1)⌋/k⌋ = J(k, v) where ⌊×⌋ denotes the greatest integer y such that yx. A (v, k, 1)-packing design having J(k, v) blocks is said to be optimal. In this article, we develop some general constructions to obtain optimal packing designs. As an application, we show that P(5, v) = J(5, v) if v ≡ 7, 11 or 15 (mod 20), with the exception of v ∈ {11, 15} and the possible exception of v ∈ {27, 47, 51, 67, 87, 135, 187, 231, 251, 291}. © 1998 John Wiley & Sons, Inc. J Combin Designs 6: 245–260, 1998  相似文献   

10.
A t-(v, k, λ) covering design is a pair (X, B) where X is a v-set and B is a collection of k-sets in X, called blocks, such that every t element subset of X is contained in at least λ blocks of B. The covering number, Cλ(t, k, v), is the minimum number of blocks a t-(v, k, λ) covering design may have. The chromatic number of (X, B) is the smallest m for which there exists a map φ: XZm such that ∣φ((β)∣ ≥2 for all β ∈ B, where φ(β) = {φ(x): x ∈ β}. The system (X, B) is equitably m-chromatic if there is a proper coloring φ with minimal m for which the numbers ∣φ?1(c)∣ cZm differ from each other by at most 1. In this article we show that minimum, (i.e., ∣B∣ = C λ (t, k, v)) equitably 3-chromatic 3-(v, 4, 1) covering designs exist for v ≡ 0 (mod 6), v ≥ 18 for v ≥ 1, 13 (mod 36), v ≡ 13 and for all numbers v = n, n + 1, where n ≡ 4, 8, 10 (mod 12), n ≥ 16; and n = 6.5a 13b 17c ?4, a + b + c > 0, and n = 14, 62. We also show that minimum, equitably 2-chromatic 3-(v, 4, 1) covering designs exist for v ≡ 0, 5, 9 (mod 12), v ≥ 0, v = 2.5a 13b 17c + 1, a + b + c > 0, and v = 23. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Let Vi (i = 1, 2) be a set of size vi. Let D be a collection of ordered pairs (b1, b2) where bi is a ki-element subset of Vi. We say that D is a mixed t-design if there exist constants λ (j,j2), (0 ≤ jiki, j1 + j2t) such that, for every choice of a j1-element subset S1 of V1 and every choice of a j2-element subset S2 of V2, there exist exactly λ(j1,j2) ordered pairs (b1, b2) in D satisfying S1b1 and S2b2. In W. J. Martin [Designs in product association schemes, submitted for publication], Delsarte's theory of designs in association schemes is extended to products of Q-polynomial association schemes. Mixed t-designs arise as a particularly interesting case. These include symmetric designs with a distinguished block and α-resolvable balanced incomplete block designs as examples. The theory in the above-mentioned paper yields results on mixed t-designs analogous to those known for ordinary t-designs, such as the Ray-Chaudhuri/Wilson bound. For example, the analogue of Fisher's inequality gives |D| ≥ v1 + v2 − 1 for mixed 2-designs with Bose's condition on resolvable designs as a special case. Partial results are obtained toward a classification of those mixed 2-designs D with |D| = v1 + v2 − 1. The central result of this article is Theorem 3.1, an analogue of the Assmus–Mattson theorem which allows us to construct mixed (t + 1 − s)-designs from any t-design with s distinct block intersection numbers. © 1998 John Wiley & Sons, Inc. J Combin Designs 6:151–163, 1998  相似文献   

12.
Given two integers n and k, nk > 1, a k-hypertournament T on n vertices is a pair (V, A), where V is a set of vertices, |V| = n and A is a set of k-tuples of vertices, called arcs, so that for any k-subset S of V, A$ contains exactly one of the k! k-tuples whose entries belong to S. A 2-hypertournament is merely an (ordinary) tournament. A path is a sequence v1a1v2v3···vt−1vt of distinct vertices v1, v2,⋖, vt and distinct arcs a1, ⋖, at−1 such that vi precedes vt−1 in a, 1 ≤ it − 1. A cycle can be defined analogously. A path or cycle containing all vertices of T (as vi's) is Hamiltonian. T is strong if T has a path from x to y for every choice of distinct x, yV. We prove that every k-hypertournament on n (k) vertices has a Hamiltonian path (an extension of Redeis theorem on tournaments) and every strong k-hypertournament with n (k + 1) vertices has a Hamiltonian cycle (an extension of Camions theorem on tournaments). Despite the last result, it is shown that the Hamiltonian cycle problem remains polynomial time solvable only for k ≤ 3 and becomes NP-complete for every fixed integer k ≥ 4. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 277–286, 1997  相似文献   

13.
Let D = {B1, B2,…, Bb} be a finite family of k-subsets (called blocks ) of a v-set X(v) = {1, 2,…, v} (with elements called points ). Then D is a (v, k, t) covering design or covering if every t-subset of X(v) is contained in at least one block of D. The number of blocks, b, is the size of the covering, and the minimum size of the covering is called the covering number , denoted C(v, k, t). This article is concerned with new constructions of coverings. The constructions improve many upper bounds on the covering number C(v, k, t) © 1998 John Wiley & Sons, Inc. J Combin Designs 6:21–41, 1998  相似文献   

14.
A mixed covering array (MCA) of type (v 1, v 2,..., v k ), denoted by MCAλ (N; t, k, (v 1, v 2,..., v k )), is an N × k array with entries in the i-th column from a set V i of v i symbols and has the property that each N × t sub-array covers all the t-tuples at least λ times, where 1 ≤ ik. An MCA λ (N; t, k, (v 1, v 2,..., v k )) is said to be super-simple, if each of its N × (t + 1) sub-arrays contains each (t + 1)-tuple at most once. Recently, it was proved by Tang, Yin and the author that an optimum super-simple MCA of type (a, b, b,..., b) is equivalent to a mixed detecting array (DTA) of type (a, b, b,..., b) with optimum size. Such DTAs can be used to generate test suites to identify and determine the interaction faults between the factors in a component-based system. In this paper, some combinatorial constructions of optimum super-simple MCAs of type (a, b, b,..., b) are provided. By employing these constructions, some optimum super-simple MCAs are then obtained. In particular, the spectrum across which optimum super-simple MCA2(2b 2; 2, 4, (a, b, b, b))′s exist, is completely determined, where 2 ≤ ab.  相似文献   

15.
Let p be an odd prime number such that p − 1 = 2em for some odd m and e ≥ 2. In this article, by using the special linear fractional group PSL(2, p), for each i, 1 ≤ ie, except particular cases, we construct a 2-design with parameters v = p + 1, k = (p − 1)/2i + 1 and λ = ((p − 1)/2i+1)(p − 1)/2 = k(p − 1)/2, and in the case i = e we show that some of these 2-designs are 3-designs. Likewise, by using the linear fractional group PGL(2,p) we construct an infinite family of 3-designs with the same v k and λ = k(k − 2). These supplement a part of [4], in which we gave an infinite family of 3-designs with parameters v = q + 1, k = (q + 1)/2 = (q − 1)/2 + 1 and λ = (q + 1)(q − 3)/8 = k(k − 2)/2, where q is a prime power such that q − 1 = 2m for some odd m and q > 7. Some of the designs given in this article and in [4] fill in a few blanks in the table of Chee, Colbourn, and Kreher [2]. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
A combination of the LIAPUNOV-SCHMIDT procedure, the implicit function theorems and the topological degree theory is used to investigate bifurcation points of equations of the form T(v) = L(λ, v) + M(λ, v), (λ, v) ? A × D?, where A is an open subset in a normed space and for every fixed λ ? A, T, L(λ ·) and M(λ ·) are mappings from the closure D? of a neighborhood D of the origin in a BANACH space X into another BANACH space Y with T(0) = L(λ, 0) = M(λ, 0) = 0. Let Λ be a characteristic value of the pair (T, L) such that T ? L( λ ,·) is a FREDHOLM mapping with nullity p and index s, p > s ≧ 0. Under suitable hypotheses on T. L and M, (λ , 0) is a bifurcation point of the above equations. This generalizes the results of [4], [6], [8], [13] and [14] etc. An application of the obtained results to the axisymmetric buckling problem of a thin spherical shell will be given.  相似文献   

17.
We prove that if there exists a t − (v, k, λ) design satisfying the inequality for some positive integer j (where m = min{j, vk} and n = min {i, t}), then there exists a t − (v + j, k, λ ()) design. © 1999 John Wiley & Sons, Inc. J Combin Designs 7: 107–112, 1999  相似文献   

18.
Starting from a real-valued Markov chain X0,X1,…,Xn with stationary transition probabilities, a random element {Y(t);t[0, 1]} of the function space D[0, 1] is constructed by letting Y(k/n)=Xk, k= 0,1,…,n, and assuming Y (t) constant in between. Sample tightness criteria for sequences {Y(t);t[0,1]};n of such random elements in D[0, 1] are then given in terms of the one-step transition probabilities of the underlying Markov chains. Applications are made to Galton-Watson branching processes.  相似文献   

19.
A covering array CA(N; t, k, v) is an N × k array with entries from a set X of v symbols such that every N × t sub-array contains all t-tuples over X at least once, where t is the strength of the array. The minimum size N for which a CA(N; t, k, v) exists is called the covering array number and denoted by CAN(t, k, v). Covering arrays are used in experiments to screen for interactions among t-subsets of k components. One of the main problems on covering arrays is to construct a CA(N; t, k, v) for given parameters (t, k, v) so that N is as small as possible. In this paper, we present some constructions of covering arrays of strengths 3 and 4 via holey difference matrices with prescribed properties. As a consequence, some of known bounds on covering array number are improved. In particular, it is proved that (1) CAN(3, 5, 2v) ≤ 2v 2(4v + 1) for any odd positive integer v with gcd(v, 9) ≠ 3; (2) CAN(3, 6, 6p) ≤ 216p 3 + 42p 2 for any prime p > 5; and (3) CAN(4, 6, 2p) ≤ 16p 4 + 5p 3 for any prime p ≡ 1 (mod 4) greater than 5.  相似文献   

20.
A Hamiltonian graph G of order n is k-ordered, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices of G, there exists a Hamiltonian cycle that encounters v1, v2, …, vk in this order. Define f(k, n) as the smallest integer m for which any graph on n vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if n is sufficiently large in terms of k. Let g(k, n) = − 1. More precisely, we show that f(k, n) = g(k, n) if n ≥ 11k − 3. Furthermore, we show that f(k, n) ≥ g(k, n) for any n ≥ 2k. Finally we show that f(k, n) > g(k, n) if 2kn ≤ 3k − 6. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 17–25, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号