首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Ge  L. Zhu 《组合设计杂志》1997,5(2):111-124
Stinson introduced authentication perpendicular arrays APAλ (t, k,ν), as a special kind of perpendicular arrays, to construct authentication and secrecy codes. In this article, we generalize the known direct and recursive constructions and show that an APA1(2, 7, ν) exists if νodd > 9384255. We also improve the known existence result for APA1(2, 5, ν) by presenting five new orders so that such a design exists if and only if ν ≥ 5 is odd, except &ngr: = 7 and possibly excepting ν = 9, 13, 15, 17, 33, 39, 49, 57, 63, 69, 87, 97, and 113. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
L. Ji 《组合设计杂志》2004,12(2):92-102
Let B3(K) = {v:? an S(3,K,v)}. For K = {4} or {4,6}, B3(K) has been determined by Hanani, and for K = {4, 5} by a previous paper of the author. In this paper, we investigate the case of K = {4,5,6}. It is easy to see that if vB3 ({4, 5, 6}), then v ≡ 0, 1, 2 (mod 4). It is known that B3{4, 6}) = {v > 0: v ≡ 0 (mod 2)} ? B3({4,5,6}) by Hanani and that B3({4, 5}) = {v > 0: v ≡ 1, 2, 4, 5, 8, 10 (mod 12) and v ≠ 13} ? B3({4, 5, 6}). We shall focus on the case of v ≡ 9 (mod 12). It is proved that B3({4,5,6}) = {v > 0: v ≡ 0, 1, 2 (mod 4) and v ≠ 9, 13}. © 2003 Wiley Periodicals, Inc.  相似文献   

3.
We study in this paper a free boundary value problem ( FB ), where a region Go in R 3 is determined by the condition that there exists a vector field vo in Go which satisfies div vo = eo, curl vo = go in Go and vo = E on the boundary ?Go with a given scalar function eo and given vector fields go and E. We give two equivalent formulations for this problem. Then we characterize the solutions by a non-linear integral equation. In order to solve the latter by a Newton method we linearize this equation. We investigate the ensuing linear integral equation. In case of axisymmetric configurations this is a singular integral equation whose index can be easily determined from the given data. We obtain a related equation, if we try to construct a field v in a region G which is on the boundary perpendicular to a given field B . Finally we use this method to investigate an astrophysical problem, which arises in the theory of pulsar magnetospheres.  相似文献   

4.
An RTD[5,λ; v] is a decomposition of the complete symmetric directed multigraph, denoted by λK, into regular tournaments of order 5. In this article we show that an RTD[5,λ; v] exists if and only if (v?1)λ ≡ 0 (mod 2) and v(v?1)λ ≡ 0 (mod 10), except for the impossible case (v,λ) = (15,1). Furthermore, we show that for each v ≡ 1,5 (mod 20), v ≠ 5, there exists a B[5,2; v] which is not RT5-directable. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Let v, k be positive integers and k ≥ 3, then Kk = : {v: vk} is a 3‐BD closed set. Two finite generating sets of 3‐BD closed sets K4 and K5 are obtained by H. Hanani [5] and Qiurong Wu [12] respectively. In this article we show that if v ≥ 6, then vB3(K,1), where K = {6,7,…,41,45,46,47,51,52,53,83,84}\{22,26}; that is, we show that K is a generating set for K6. Finally we show that vB3(6,20) for all vK\{35,39,40,45}. © 2007 Wiley Periodicals, Inc. J Combin Designs 16: 128–136, 2008  相似文献   

6.
Let Im(v) denote the set of integers k for which a pair of m-cycle systems of Kv, exist, on the same vertex set, having k common cycles. Let Jm(v) = {0, 1, 2,…, tv ?2, tv} where tv = v(v ? 1)/2m. In this article, if 2mn + x is an admissible order of an m-cycle system, we investigate when Im(2mn + x) = Jm(2mn + x), for both m even and m odd. Results include Jm(2mn + 1) = Im(2mn + 1) for all n > 1 if m is even, and for all n > 2 if n is odd. Moreover, the intersection problem for even cycle systems is completely solved for an equivalence class x (mod 2m) once it is solved for the smallest in that equivalence class and for K2m+1. For odd cycle systems, results are similar, although generally the two smallest values in each equivalence class need to be solved. We also completely solve the intersection problem for m = 4, 6, 7, 8, and 9. (The cased m = 5 was done by C-M. K. Fu in 1987.) © 1993 John Wiley & Sons, Inc.  相似文献   

7.
A graph G is hamiltonian connected if there exists a hamiltonian path joining any two distinct nodes of G. Two hamiltonian paths and of G from u to v are independent if u = u 1 = v 1, v = u v(G) = v v(G) , and u i ≠ v i for every 1 < iv(G). A set of hamiltonian paths, {P 1, P 2, . . . , P k }, of G from u to v are mutually independent if any two different hamiltonian paths are independent from u to v. A graph is k mutually independent hamiltonian connected if for any two distinct nodes u and v, there are k mutually independent hamiltonian paths from u to v. The mutually independent hamiltonian connectivity of a graph G, IHP(G), is the maximum integer k such that G is k mutually independent hamiltonian connected. Let n and k be any two distinct positive integers with nk ≥ 2. We use S n,k to denote the (n, k)-star graph. In this paper, we prove that IHP(S n,k ) = n–2 except for S 4,2 such that IHP(S 4,2) = 1.   相似文献   

8.
Let X be a 4-valent connected vertex-transitive graph with odd-prime-power order p^κ(κ≥1) and let A be the full automorphism group of X.In this paper,we prove that the stabilizer Av of a vertex v in A is a 2-group if p≠5,or a {2,3}-group if p=5.Furthermore,if p=5|Av| is not divisible by 3^2.As a result ,we show that any 4-valent connected vertex-transitive graph with odd-prime-power order p^κ(κ≥1) is at most 1-arc-transitive for p≠5 and 2-arc-transitive for p=5.  相似文献   

9.
A t-(v, k, λ) covering design is a pair (X, B) where X is a v-set and B is a collection of k-sets in X, called blocks, such that every t element subset of X is contained in at least λ blocks of B. The covering number, Cλ(t, k, v), is the minimum number of blocks a t-(v, k, λ) covering design may have. The chromatic number of (X, B) is the smallest m for which there exists a map φ: XZm such that ∣φ((β)∣ ≥2 for all β ∈ B, where φ(β) = {φ(x): x ∈ β}. The system (X, B) is equitably m-chromatic if there is a proper coloring φ with minimal m for which the numbers ∣φ?1(c)∣ cZm differ from each other by at most 1. In this article we show that minimum, (i.e., ∣B∣ = C λ (t, k, v)) equitably 3-chromatic 3-(v, 4, 1) covering designs exist for v ≡ 0 (mod 6), v ≥ 18 for v ≥ 1, 13 (mod 36), v ≡ 13 and for all numbers v = n, n + 1, where n ≡ 4, 8, 10 (mod 12), n ≥ 16; and n = 6.5a 13b 17c ?4, a + b + c > 0, and n = 14, 62. We also show that minimum, equitably 2-chromatic 3-(v, 4, 1) covering designs exist for v ≡ 0, 5, 9 (mod 12), v ≥ 0, v = 2.5a 13b 17c + 1, a + b + c > 0, and v = 23. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Let nq(k, d) denote the smallest value of n for which there exists an [n, k, d; q]-code. It is known (cf. (J. Combin. Inform. Syst. Sci.18, 1993, 161–191)) that (1) n3(6, 195) {294, 295}, n3(6, 194) {293, 294}, n3(6, 193) {292, 293}, n3(6, 192) {290, 291}, n3(6, 191) {289, 290}, n3(6, 165) {250, 251} and (2) there is a one-to-one correspondence between the set of all nonequivalent [294, 6, 195; 3]-codes meeting the Griesmer bound and the set of all {v2 + 2v3 + v4, v1 + 2v2 + v3; 5, 3}-minihypers, where vi = (3i − 1)/(3 − 1) for any integer i ≥ 0. The purpose of this paper is to show that (1) n3(6, 195) = 294, n3(6, 194) = 293, n3(6, 193) = 292, n3(6, 192) = 290, n3(6, 191) = 289, n3(6, 165) = 250 and (2) a [294, 6, 195; 3]-code is unique up to equivalence using a characterization of the corresponding {v2 + 2v3 + v4, v1 + 2v2 + v3; 5, 3}-minihypers.  相似文献   

11.
We study the class of coalgebras C of fc-tame comodule type introduced by the author. With any basic computable K-coalgebra C and a bipartite vector v = (v′|v″) ∈ K 0(C) × K 0(C), we associate a bimodule matrix problem Mat v C (ℍ), an additive Roiter bocs B C v , an affine algebraic K-variety Comod C v , and an algebraic group action G C v × Comod C v Comod C v . We study the fc-tame comodule type and the fc-wild comodule type of C by means of Mat v C (ℍ), the category rep K (B C v ) of K-linear representations of B C v , and geometry of G C v -orbits of Comod C v . For computable coalgebras C over an algebraically closed field K, we give an alternative proof of the fc-tame-wild dichotomy theorem. A characterization of fc-tameness of C is given in terms of geometry of G C v -orbits of Comod v . In particular, we show that C is fc-tame of discrete comodule type if and only if the number of G C v -orbits in Comod C v is finite for every v = (v′|v″) ∈ K 0(C) × K 0(C).  相似文献   

12.
Along the boundary between elastic and fluid media, the surface Rayleigh wave propagates. The velocity of this wave v R0 in the case of a plane boundary is less than the velocity of the Rayleigh wave v R on a free plane boundary of an elastic medium and less than the velocity v P0 in a fluid medium. To investigate the velocity v R0 in the case of curvilinear boundaries, the propagation of Rayleigh waves under consideration along cylindrical and spherical surfaces is studied. The velocity of the Rayleigh wave depends on the curvature of the wave trajectory and the curvature in the direction perpendicular to the trajectory. Furthermore this velocity depends on the presence or absence of a fluid medium. Bibliography: 5 titles.  相似文献   

13.
We prove that if G is a 5‐connected graph embedded on a surface Σ (other than the sphere) with face‐width at least 5, then G contains a subdivision of K5. This is a special case of a conjecture of P. Seymour, that every 5‐connected nonplanar graph contains a subdivision of K5. Moreover, we prove that if G is 6‐connected and embedded with face‐width at least 5, then for every vV(G), G contains a subdivision of K5 whose branch vertices are v and four neighbors of v.  相似文献   

14.
A collection of k‐subsets (called blocks) of a v‐set X (v) = {1, 2,…, v} (with elements called points) is called a t‐(v, k, m, λ) covering if for every m‐subset M of X (v) there is a subcollection of with such that every block K ∈ has at least t points in common with M. It is required that vkt and vmt. The minimum number of blocks in a t‐(v, k, m, λ) covering is denoted by Cλ(v, k, t, m). We present some constructions producing the best known upper bounds on Cλ(v, k, t, m) for k = 6, a parameter of interest to lottery players. © 2004 Wiley Periodicals, Inc.  相似文献   

15.
In this paper we consider a system of heat equations ut = Δu, vt = Δv in an unbounded domain Ω⊂ℝN coupled through the Neumann boundary conditions uv = vp, vv = uq, where p>0, q>0, pq>1 and ν is the exterior unit normal on ∂Ω. It is shown that for several types of domain there exists a critical exponent such that all of positive solutions blow up in a finite time in subcritical case (including the critical case) while there exist positive global solutions in the supercritical case if initial data are small.  相似文献   

16.
In this article, we consider the following problem. Given four distinct vertices v1,v2,v3,v4. How many edges guarantee the existence of seven connected disjoint subgraphs Xi for i = 1,…, 7 such that Xj contains vj for j = 1, 2, 3, 4 and for j = 1, 2, 3, 4, Xj has a neighbor to each Xk with k = 5, 6, 7. This is the so called “rooted K3, 4‐minor problem.” There are only few known results on rooted minor problems, for example, [15,6]. In this article, we prove that a 4‐connected graph with n vertices and at least 5n ? 14 edges has a rooted K3,4‐minor. In the proof we use a lemma on graphs with 9 vertices, proved by computer search. We also consider the similar problems concerning rooted K3,3‐minor problem, and rooted K3,2‐minor problem. More precisely, the first theorem says that if G is 3‐connected and e(G) ≥ 4|G| ? 9 then G has a rooted K3,3‐minor, and the second theorem says that if G is 2‐connected and e(G) ≥ 13/5|G| ? 17/5 then G has a rooted K3,2‐minor. In the second case, the extremal function for the number of edges is best possible. These results are then used in the proof of our forthcoming articles 7 , 8 . © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 191–207, 2007  相似文献   

17.
An L(2,1)-labelling of a graph G is a function from the vertex set V (G) to the set of all nonnegative integers such that |f(u) f(v)| ≥ 2 if d G (u,v)=1 and |f(u) f(v)| ≥ 1 if d G (u,v)=2.The L(2,1)-labelling problem is to find the smallest number,denoted by λ(G),such that there exists an L(2,1)-labelling function with no label greater than it.In this paper,we study this problem for trees.Our results improve the result of Wang [The L(2,1)-labelling of trees,Discrete Appl.Math.154 (2006) 598-603].  相似文献   

18.
We prove in this paper new velocity‐averaging results for second‐order multidimensional equations of the general form ??(?x, v)f(x, v) = g(x, v) where ??(?x, v) := a (v) · ?x ? ? x ? · b (v)?x. These results quantify the Sobolev regularity of the averages, ∫v f(x, v)?(v)dv, in terms of the nondegeneracy of the set {v: |??(iξ, v)| ≤ δ} and the mere integrability of the data, (f, g) ∈ (L, L). Velocity averaging is then used to study the regularizing effect in quasi‐linear second‐order equations, ??(?x, ρ)ρ = S(ρ), which use their underlying kinetic formulations, ??(?x, vρ = gS. In particular, we improve previous regularity statements for nonlinear conservation laws, and we derive completely new regularity results for convection‐diffusion and elliptic equations driven by degenerate, nonisotropic diffusion. © 2007 Wiley Periodicals, Inc.  相似文献   

19.
The decomposition of the complete graph Kv into Kr×Kc's, the products of Kr and Kc,is originated from the use of DNA library screening. In this paper, we consider the case where r=2 and c = 5, and show that such a decomposition exists if and only if v ≡ 1 (mod 25).  相似文献   

20.
A uniform attachment graph (with parameter k), denoted Gn,k in the paper, is a random graph on the vertex set [n], where each vertex v makes k selections from [v ? 1] uniformly and independently, and these selections determine the edge set. We study several aspects of this graph. Our motivation comes from two similarly constructed, well‐studied random graphs: k‐out graphs and preferential attachment graphs. In this paper, we find the asymptotic distribution of its minimum degree and connectivity, and study the expansion properties of Gn,k to show that the conductance of Gn,k is of order . We also study the bootstrap percolation on Gn,k, where r infected neighbors infect a vertex, and show that if the probability of initial infection of a vertex is negligible compared to then with high probability (whp) the disease will not spread to the whole vertex set, and if this probability exceeds by a sub‐logarithmical factor then the disease whp will spread to the whole vertex set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号