首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Journal of Dynamics and Differential Equations - Periodic waves in the modified Korteweg–de Vries (mKdV) equation are revisited in the setting of the fractional Laplacian. Two families of...  相似文献   

3.
. We consider the two and three‐dimensional system of linear thermoelasticity in a bounded smooth domain with Dirichlet boundary conditions. We analyze whether the energy of solutions decays exponentially uniformly to zero as . First of all, by a decoupling method, we reduce the problem to an observability inequality for the Lamé system in linear elasticity and more precisely to whether the total energy of the solutions can be estimated in terms of the energy concentrated on its longitudinal component. We show that when the domain is convex, the decay rate is never uniform. In fact, the lack of uniform decay holds in a more general class of domains in which there exist rays of geometric optics of arbitrarily large length that are always reflected perpendicularly or almost tangentially on the boundary. We also show that, in three space dimensions, the lack of uniform decay may also be due to a critical polarization of the energy on the transversal component of the displacement. In two space dimensions we prove a sufficient (and almost necessary) condition for the uniform decay to hold in terms of the propagation of the transversal characteristic rays, under the further assumption that the boundary of the domain does not have contacts of infinite order with its tangents. We also give an example, due to D. Hulin, in which these geometric properties hold. In three space dimensions we indicate (without proof) how a careful analysis of the polarization of singularities may lead to sharp sufficient conditions for the uniform decay to hold. In two space dimensions we prove that smooth solutions decay polynomially in the energy space to a finite‐dimensional subspace of solutions except when the domain is a ball or an annulus. Finally we discuss some closely related controllability and spectral issues. (Accepted May 14, 1998)  相似文献   

4.
We study a class of systems of reaction–diffusion equations in infinite cylinders which arise within the context of Ginzburg–Landau theories and describe the kinetics of phase transformation in second-order or weakly first-order phase transitions with non-conserved order parameters. We use a variational characterization to study the existence of a special class of traveling wave solutions which are characterized by a fast exponential decay in the direction of propagation. Our main result is a simple verifiable criterion for existence of these traveling waves under the very general assumptions of non-linearities. We also prove boundedness, regularity, and some other properties of the obtained solutions, as well as several sufficient conditions for existence or non-existence of such traveling waves, and give rigorous upper and lower bounds for their speed. In addition, we prove that the speed of the obtained solutions gives a sharp upper bound for the propagation speed of a class of disturbances which are initially sufficiently localized. We give a sample application of our results using a computer-assisted approach.  相似文献   

5.
Journal of Dynamics and Differential Equations - A correction to this paper has been published: https://doi.org/10.1007/s10884-021-10016-2  相似文献   

6.
A whitney family of almost periodic solutions for one dimensional Schrödinger equations with the external parameters are proved. It’s based on a detailed analysis to the shift of frequency and an improved infinite dimension KAM theory.  相似文献   

7.
This paper is concerned with the spectrum the Hill operator L(y) = −y′′ + Q(x) y in L2per[0, p]{L^{2}_{\rm per}[0, \pi]} . We show that the eigenvalues of L can be characterized by knowing one of its eigenfunctions. Applications are given to nonlinear stability of a class of periodic problems.  相似文献   

8.
The existence of travelling wave type solutions is studied for a scalar reaction diffusion equation in \(\mathbb {R}^2\) with a nonlinearity which depends periodically on the spatial variable. We treat the coefficient of the linear term as a parameter and we formulate the problem as an infinite spatial dynamical system. Using a centre manifold reduction we obtain a finite dimensional dynamical system on the centre manifold with fully degenerate linear part. By phase space analysis and Conley index methods we find conditions on the parameter and nonlinearity for the existence of travelling wave type solutions with particular wave speeds. The analysis provides an approach to the homogenisation problem as the period of the periodic dependence in the nonlinearity tends to zero.  相似文献   

9.
Steady periodic water waves on infinite depth, satisfying exactly the kinematic and dynamic boundary conditions on the free surface, with or without surface tension, are given by solutions of a rather tidy nonlinear pseudo-differential operator equation for a 2π-periodic function of a real variable. Being an Euler-Lagrange equation, this formulation has the advantage of gradient structure, but is complicated by the fact that it involves a non-local operator, namely the Hilbert transform, and is quasi-linear. This paper is a mathematical study of the equation in question. First it is shown that its W 1,2 solutions are real analytic. Then bifurcation theory for gradient operators is used to prove the existence of (non-zero) small amplitude waves near every eigenvalue (irrespective of multiplicity) of the linearised problem. Finally it is shown that when surface tension is absent there are no sub-harmonic bifurcations or turning points at the outset of the branches of Stokes waves which bifurcate from the trivial solution. Accepted: December 6, 1999  相似文献   

10.
We prove a blow-up criterion in terms of the upper bound of (ρ, ρ −1, θ) for a strong solution to three dimensional compressible viscous heat-conductive flows. The main ingredient of the proof is an a priori estimate for a quantity independently introduced in Haspot (Regularity of weak solutions of the compressible isentropic Navier–Stokes equation, arXiv:1001.1581, 2010) and Sun et al. (J Math Pure Appl 95:36–47, 2011), whose divergence can be viewed as the effective viscous flux.  相似文献   

11.
In this paper, we consider FPU lattices with particles of unit mass. The dynamics of the system is described by the infinite system of second order differential equations
$$\begin{aligned} \ddot{q}_n= U^{\prime }(q_{n+1}-q_n)-U^{\prime }(q_n-q_{n-1}),\quad n\in \mathbb {Z}, \end{aligned}$$
where \(q_n\) denotes the displacement of the \(n\)-th lattice site and \(U\) is the potential of interaction between two adjacent particles. We investigate the existence of two kinds travelling wave solutions: periodic and solitary ones under some growth conditions on \(U\) which is different from the widely used Ambrosetti–Rabinowitz condition.
  相似文献   

12.
This paper is concerned with time periodic traveling curved fronts for periodic Lotka–Volterra competition system with diffusion in two dimensional spatial space
$$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{\partial u_{1}}{\partial t}=\Delta u_{1} +u_{1}(x,y,t)\left( r_{1}(t)-a_{1}(t)u_{1}(x,y,t)-b_{1}(t)u_{2}(x,y,t)\right) ,\\ \dfrac{\partial u_{2}}{\partial t}=d\Delta u_{2} +u_{2}(x,y,t)\left( r_{2}(t)-a_{2}(t)u_{1}(x,y,t)-b_{2}(t)u_{2}(x,y,t)\right) , \end{array}\right. } \end{aligned}$$
where \(\Delta \) denotes \(\frac{\partial ^{2}}{\partial x^{2} }+ \frac{\partial ^{2}}{\partial y^{2} }\), \(x,y\in {\mathbb {R}}\) and \(d>0\) is a constant, the functions \(r_i(t),a_i(t)\) and \(b_i(t)\) are T-periodic and Hölder continuous. Under suitable assumptions that the corresponding kinetic system admits two stable periodic solutions (p(t), 0) and (0, q(t)), the existence, uniqueness and stability of one-dimensional traveling wave solution \(\left( \Phi _{1}(x+ct,t),\Phi _{2}(x+ct,t)\right) \) connecting two periodic solutions (p(t), 0) and (0, q(t)) have been established by Bao and Wang ( J Differ Equ 255:2402–2435, 2013) recently. In this paper we continue to investigate two-dimensional traveling wave solutions of the above system under the same assumptions. First, we establish the asymptotic behaviors of one-dimensional traveling wave solutions of the system at infinity. Using these asymptotic behaviors, we then construct appropriate super- and subsolutions and prove the existence and non-existence of two-dimensional time periodic traveling curved fronts. Finally, we show that the time periodic traveling curved front is asymptotically stable.
  相似文献   

13.
Time-periodic solutions to the linearized Navier–Stokes system in the n-dimensional whole-space are investigated. For time-periodic data in L q -spaces, maximal regularity and corresponding a priori estimates for the associated time-periodic solutions are established. More specifically, a Banach space of time-periodic vector fields is identified with the property that the linearized Navier–Stokes operator maps this space homeomorphically onto the L q -space of time-periodic data.  相似文献   

14.
This paper is concerned with the spectrum the Hill operator L(y) = −y′′ + Q(x) y in L2per[0, p]{L^2_{{\rm per}}[0, \pi]}. We show that the eigenvalues of L can be characterized by knowing one of its eigenfunctions. Applications are given to nonlinear stability of a class of periodic problems.  相似文献   

15.
In this paper,problems of bending of thin plates under the combined action of lateral loadingand in-plane forces are studied by means of perturbation method.  相似文献   

16.
We show here the global, in time, regularity of the three dimensional viscous Camassa–Holm (Navier–Stokes-alpha) (NS-) equations. We also provide estimates, in terms of the physical parameters of the equations, for the Hausdorff and fractal dimensions of their global attractor. In analogy with the Kolmogorov theory of turbulence, we define a small spatial scale, , as the scale at which the balance occurs in the mean rates of nonlinear transport of energy and viscous dissipation of energy. Furthermore, we show that the number of degrees of freedom in the long-time behavior of the solutions to these equations is bounded from above by (L/ )3, where L is a typical large spatial scale (e.g., the size of the domain). This estimate suggests that the Landau–Lifshitz classical theory of turbulence is suitable for interpreting the solutions of the NS- equations. Hence, one may consider these equations as a closure model for the Reynolds averaged Navier–Stokes equations (NSE). We study this approach, further, in other related papers. Finally, we discuss the relation of the NS- model to the NSE by proving a convergence theorem, that as the length scale 1 tends to zero a subsequence of solutions of the NS- equations converges to a weak solution of the three dimensional NSE.  相似文献   

17.
In the present paper, we study the uniform regularity and vanishing dissipation limit for the full compressible Navier–Stokes system whose viscosity and heat conductivity are allowed to vanish at different orders. The problem is studied in a three dimensional bounded domain with Navier-slip type boundary conditions. It is shown that there exists a unique strong solution to the full compressible Navier–Stokes system with the boundary conditions in a finite time interval which is independent of the viscosity and heat conductivity. The solution is uniformly bounded in \({W^{1,\infty}}\) and is a conormal Sobolev space. Based on such uniform estimates, we prove the convergence of the solutions of the full compressible Navier–Stokes to the corresponding solutions of the full compressible Euler system in \({L^\infty(0,T; L^2)}\), \({L^\infty(0,T; H^{1})}\) and \({L^\infty([0,T]\times\Omega)}\) with a rate of convergence.  相似文献   

18.
We use the method of the topological degree, the theory of fractional powers of positive operators, and the Grisvard formula together with results proved by G. Raugel and G. R. Sell to study the periodic solutions of the incompressible Navier–Stokes equations in a thin three-dimensional domain.  相似文献   

19.
In the first part of the paper we study decays of solutions of the Navier–Stokes equations on short time intervals. We show, for example, that if w is a global strong nonzero solution of homogeneous Navier–Stokes equations in a sufficiently smooth (unbounded) domain Ω ⊆ R3 and β ∈[1/2, 1) , then there exist C0 > 1 and δ0 ∈ (0, 1) such that
\frac |||w(t)|||b|||w(t + d)|||bC0{\frac {|||w(t)|||_\beta}{|||w(t + \delta)|||_{\beta}}} \leq C_0  相似文献   

20.
R. Quintanilla 《Meccanica》2018,53(14):3607-3613
In this short note we consider a recent modification of the Green–Lindsay thermoelastic theory proposed at Yu et al. (Meccanica 53:2543–2554, 2018). We consider a functional defined on the solutions of the problem. It allows us to obtain the continuous dependence of the solutions with respect to the initial conditions and to the supply terms, the time exponential decay of solutions and an alternative of Phragmén–Lindelöf type for the spatial behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号