首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nonlinear stochastic partial differential equations have a wide range of applications in science and engineering. Finding exact solutions of the Wick-type stochastic equation will be helpful in the theories and numerical studies of such equations. In this paper, Kudrayshov method together with Hermite transform is implemented to obtain exact solutions of Wick-type stochastic Korteweg–de Vries equation. Further, graphical illustrations in two- and three-dimensional plots of the obtained solutions depending on time and space are also given with white noise functionals.  相似文献   

2.
The goal of this note is to construct a class of traveling solitary wave solutions for the compound Burgers–Korteweg–de Vries equation by means of a hyperbolic ansatz. A computational error in a previous work has been clarified.  相似文献   

3.
Solving nonlinear partial differential equations have attracted intensive attention in the past few decades. In this paper, the Darboux transformation method is used to derive several positon and hybrid solutions for the(2+1)-dimensional complex modified Korteweg–de Vries equations. Based on the zero seed solution, the positon solution and the hybrid solutions of positon and soliton are constructed. The composition of positons is studied, showing that multi-positons of(2+1)-dimensional equations...  相似文献   

4.
5.
By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel’nikov equation and the multicomponent Schrödinger–Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel’nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger–Boussinesq system are generated.  相似文献   

6.
曹小群  宋君强  张卫民  赵军 《中国物理 B》2011,20(9):90401-090401
Variational principles are constructed using the semi-inverse method for two kinds of extended Korteweg—de Vries (KdV) equations, which can be regarded as simple models of the nonlinear oceanic internal waves and atmospheric long waves, respectively. The obtained variational principles have also been proved to be correct.  相似文献   

7.
We study existence of helical solitons in the vector modified Korteweg–de Vries (mKdV) equations, one of which is integrable, whereas another one is non-integrable. The latter one describes nonlinear waves in various physical systems, including plasma and chains of particles connected by elastic springs. By using the dynamical system methods such as the blow-up near singular points and the construction of invariant manifolds, we construct helical solitons by the efficient shooting method. The helical solitons arise as the result of co-dimension one bifurcation and exist along a curve in the velocity-frequency parameter plane. Examples of helical solitons are constructed numerically for the non-integrable equation and compared with exact solutions in the integrable vector mKdV equation. The stability of helical solitons with respect to small perturbations is confirmed by direct numerical simulations.  相似文献   

8.
9.
We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as Brownian motion functional solutions.  相似文献   

10.
11.
《Physics letters. A》2002,306(1):45-51
By generalization of the Kawasaki–Ohta equation representing the interface dynamics, we report formulation of equations, which express mass transports, deterministic and stochastic, for nonlinear lattices. The equations are written characteristically by flow variable representations defined in the Letter. We found that the KdV equation and the Burgers equation, formulated by the flow variables, express mass transports in hydrodynamics and in stochastic processes, respectively. The representations lead to the conclusion that in nonequilibria we should observe a change not in a concentration but in concentration flows.  相似文献   

12.
A conformal multi-symplectic method has been proposed for the damped Korteweg–de Vries(DKdV) equation, which is based on the conformal multi-symplectic structure. By using the Strang-splitting method and the Preissmann box scheme,we obtain a conformal multi-symplectic scheme for multi-symplectic partial differential equations(PDEs) with added dissipation. Applying it to the DKdV equation, we construct a conformal multi-symplectic algorithm for it, which is of second order accuracy in time. Numerical experiments demonstrate that the proposed method not only preserves the dissipation rate of mass exactly with periodic boundary conditions, but also has excellent long-time numerical behavior.  相似文献   

13.
《中国物理 B》2021,30(6):60201-060201
The Schamel–Korteweg–de Vries equation is investigated by the approach of dynamics.The existences of solitary wave including ω-shape solitary wave and periodic wave are proved via investigating the dynamical behaviors with phase space analyses.The sufficient conditions to guarantee the existences of the above solutions in different regions of the parametric space are given.All possible exact explicit parametric representations of the waves are also presented.Along with the details of the analyses,the analytical results are numerically simulated lastly.  相似文献   

14.
In this paper, we develop a finite-volume scheme for the KdV equation which conserves both the momentum and energy. The main ingredient of the method is a numerical device we developed in recent years that enables us to construct numerical method for a PDE that also simulates its related equations. In the method, numerical approximations to both the momentum and energy are conservatively computed. The operator splitting approach is adopted in constructing the method in which the conservation and dispersion parts of the equation are alternatively solved; our numerical device is applied in solving the conservation part of the equation. The feasibility and stability of the method is discussed, which involves an important property of the method, the so-called Jensen condition. The truncation error of the method is analyzed, which shows that the method is second-order accurate. Finally, several numerical examples, including the Zabusky–Kruskal’s example, are presented to show the good stability property of the method for long-time numerical integration.  相似文献   

15.
The dynamical behaviour of a reduced form of the perturbed generalized Korteweg–de Vries and Kadomtsev–Petviashvili equations (extension of the Korteweg–de Vries equation to two space variables) are studied in this paper. Harmonic solutions of non-resonance and primary resonance are obtained using the perturbation method. Chaotic motion under harmonic excitations is studied using the Melnikov method.A wide range of solutions for the reduced perturbed generalized Korteweg–de Vries equations, in which non-linear phenomena appearing within transition from regular harmonic response (periodic solutions) to chaotic motion, are obtained using the time integration Runge–Kutta method. When chaos is found, it is detected by examining the phase plane, the Poincaré map, the sensitivity solution of the solution to initial conditions, and by calculating the largest Lyapunov exponent.  相似文献   

16.
Using the fluid hydrodynamic equations of positive and negative ions, as well as q-nonextensive electron density distribution, an extended Korteweg–de Vries (EKdV) equation describing a small but finite amplitude dust ion-acoustic waves (DIAWs) is derived. Extended homogeneous balance method is used to obtain a new class of solutions of the EKdV equation. The effects of different physical parameters on the propagating nonlinear structures and their relevance to particle acceleration in space plasma are reported.  相似文献   

17.
In this paper,a Crank-Nicolson-type finite difference method is proposed for computing the soliton solutions of a complex modifed Korteweg de Vries(MKdV)equation(which is equivalent to the Sasa-Satsuma equation)with the vanishing boundary condition.It is proved that such a numerical scheme has the second order accuracy both in space and time,and conserves the mass in the discrete level.Meanwhile,the resuling scheme is shown to be unconditionally stable via the von Nuemann analysis.In addition,an iterative method and the Thomas algorithm are used together to enhance the computational efficiency.In numerical experiments,this method is used to simulate the single-soliton propagation and two-soliton collisions in the complex MKdV equation.The numerical accuracy,mass conservation and linear stability are tested to assess the scheme's performance.  相似文献   

18.
In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used to solve such an equation, unstable or even wrong numerical solutions may be obtained due to the violation of the consistency conditions of the moving least-squares (MLS) shape functions. To solve this problem, the EFG method is improved by employing the improved moving least-squares (IMLS) approximation based on the shifted polynomial basis functions. The effectiveness of the IEFG method for the gfKdV equation is investigated by using some numerical examples. Meanwhile, the motion of single solitary wave and the interaction of two solitons are simulated using the IEFG method.  相似文献   

19.
This paper deals with the transmission of a soliton in a random medium described by a randomly perturbed Korteweg–de Vries equation. Different kinds of perturbations are addressed, depending on their specific time or position dependences, with or without damping. We derive effective evolution equations for the soliton parameter by applying a perturbation theory of the inverse scattering transform and limit theorems of stochastic calculus. Original results are derived that are very different compared to a randomly perturbed Nonlinear Schrödinger equation. First the emission of a soliton gas is proved to be a very general feature. Second some perturbations are shown to involve a speeding-up of the soliton, instead of the decay that is usually observed in random media.  相似文献   

20.
We consider a solution of three dimensional New Massive Gravity with a negative cosmological constant and use the AdS/CTF correspondence to inquire about the equivalent two dimensional model at the boundary. We conclude that there should be a close relation of the theory with the Korteweg–de Vries equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号