共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The decay of turbulent kinetic energy in nearly isotropic grid turbulence has been studied extensively as a fundamental point of reference for turbulence theories and numerical simulations. Most studies have focused on nearly homogeneous turbulence characterised by power-law decay. Other studies have focused on so-called shearless mixing layers, in which two regions with the same mean velocity but distinctly different kinetic energy levels slowly diffuse into each other downstream thus providing information about spatial transport of turbulence. Here, we introduce and study another type of shearless turbulent flow. It has initially a nearly uniform spatial gradient of kinetic energy of the form k ~ β(y ? y0), where y is the spanwise position. In the experiments, this gradient is generated with the use of an active grid and screens mounted upstream of the wind-tunnel’s test section, iteratively designed to produce a uniform gradient of turbulent kinetic energy without mean velocity shear. Data are acquired using X-wire thermal anemometry at different spanwise and downstream locations. Profile measurements are used to quantify the constancy of the mean velocity and the linearity of the initial profile of kinetic energy. Measurements show that at all spanwise locations, the decay in the streamwise direction follows a power-law but with exponents n(y) that depend upon the spanwise location. The results are consistent with a decay of the form k/?u?2 = β(x/xref)?n(y)(y ? y0)/M. Results for the development of integral length scale, and for velocity skewness and flatness factors are also presented. Significant deviations from Gaussianity are observed especially for the spanwise velocity component in the lower kinetic energy region. Future experiments will be needed including measurements of the dissipation rate ? at sufficient accuracy, in order to unambiguously partition the energy decay into dissipation and spatial diffusion. 相似文献
3.
《Journal of Nonlinear Mathematical Physics》2013,20(1):109-120
A new geometric view of homogeneous isotropic turbulence is contemplated employing the two-point velocity correlation tensor of the velocity fluctuations. We show that this correlation tensor generates a family of pseudo-Riemannian metrics. This enables us to specify the geometry of a singled out Eulerian fluid volume in a statistical sense. We expose the relationship of some geometric constructions with statistical quantities arising in turbulence. 相似文献
4.
5.
本文采用直接数值模拟方法,在具有平均标量梯度的各向同性湍流中,研究被动标量的小尺度结构特性及其与湍流场中应变与涡量的关系.对欧拉统计量及拉格朗日统计量的统计表明:标量耗散的形成主要是由于标量梯度同流场的应变张量压缩主轴耦合的结果,而涡量对标量梯度的形成只有较弱的影响,然而它可以间接影响大强度标量耗散的产生.强标量耗散的细微片状结构的形成时间尺度大约为10倍Kolmogrov时间尺度;在形成强标量梯度的细微片状结构过程中,应变强度随标量梯度同步增大,而涡量则先减小后增大,并在5倍Kolmogorov时间尺度时达到最大. 相似文献
6.
Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence
下载免费PDF全文

Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects. 相似文献
7.
The behaviour of the second-order Lagrangian structure functions on state-of-the-art numerical data both in two and three dimensions is studied. On the basis of a phenomenological connection between Eulerian space-fluctuations and the Lagrangian time-fluctuations, it is possible to rephrase the Kolmogorov 4/5-law into a relation predicting the linear (in time) scaling for the second-order Lagrangian structure function. When such a function is directly observed on current experimental or numerical data, it does not clearly display a scaling regime. A parameterisation of the Lagrangian structure functions based on Batchelor model is introduced and tested on data for 3d turbulence, and for 2d turbulence in the inverse cascade regime. Such parameterisation supports the idea, previously suggested, that both Eulerian and Lagrangian data are consistent with a linear scaling plus finite-Reynolds number effects affecting the small- and large timescales. When large-time saturation effects are properly accounted for, compensated plots show a detectable plateau already at the available Reynolds number. Furthermore, this parameterisation allows us to make quantitative predictions on the Reynolds number value for which Lagrangian structure functions are expected to display a scaling region. Finally, we show that this is also sufficient to predict the anomalous dependency of the normalised root mean squared acceleration as a function of the Reynolds number, without fitting parameters. 相似文献
8.
采用直接数值模拟方法,对具有平均标量梯度的被动标量场在稳定、均匀各向同性湍流中的统计特性进行了研究(计算Reλ为25和48,Pr数从0.3到4.0)。模拟结果表明:标量的概率密度函数是高斯分布的;标量耗散率的概率分布是不对称性的,在它的左枝还存在明显的拖尾现象,并非对数正态分布;在Re数相同的情况下,随着Pr数的增加, 沿着平均标量梯度方向上的标量梯度其概率分布的偏斜度是减少的,反映出回归各向同性的趋势,而且在以涡量为条件的标量梯度的偏斜度变化曲线中发现涡量影响的饱和现象,我们认为这是由于涡量通过对标量场小尺度结构进行旋转作用来影响标量场的结果。 相似文献
9.
A-priori testing of alpha regularisation models as subgrid-scale closures for large-eddy simulations
Alpha-type regularisation models provide theoretically attractive subgrid-scale closure approximations for large-eddy simulations of turbulent flow. We adopt the a-priori testing strategy to study three different alpha regularisation models, namely the Navier–Stokes-α model, the Leray-α model, and the Clark-α model. Specifically, we use high-resolution direct numerical simulation data of homogeneous isotropic turbulence to compute the mean subgrid-scale dissipation, the spatial distribution of the subgrid-scale dissipation, and the spatial distribution of elements of the subgrid-scale stress tensor. This is done for different filter parameters and different large-eddy simulation grid resolutions. Predictions of the three regularisation models are compared to the exact values of the subgrid-scale stress tensor, as defined in the filtered Navier–Stokes equations. The potential of the three regularisation models to provide good approximations is quantified using spatial correlation coefficients. Whereas the Clark-α model exhibits the highest spatial correlation coefficients for the subgrid-scale dissipation and the subgrid-scale stress tensor elements, the Leray-α model provides lower correlation coefficients, and the Navier–Stokes-α model exhibits the lowest correlation coefficients of the three models. Our results indicate the presence of an optimal choice of the filter parameter α depending on the large-eddy simulation grid resolution. 相似文献
10.
11.
We investigate the statistics of orientation of small, neutrally buoyant, spherical tracers whose centre of mass is displaced from the geometrical centre. If appropriate-sized particles are considered, a linear relation can be derived between the horizontal components of the orientation vector and the same components of acceleration. Direct numerical simulations are carried out, showing that such relation can be used to reconstruct the statistics of acceleration fluctuations up to the order of the gravitational acceleration. Based on such results, we suggest a novel method for the local experimental measurement of accelerations in turbulent flows. 相似文献
12.
13.
In deducing the consequences of the Direct Interaction Approximation, Kraichnan was sometimes led to consider the properties of special classes of nonlinear interactions in degenerate triads in which one wavevector is very small. Such interactions can be described by simplified models closely related to elementary closures for homogeneous isotropic turbulence such as the Heisenberg and Leith models. These connections can be exploited to derive considerably improved versions of the Heisenberg and Leith models that are only slightly more complicated analytically. This paper applies this approach to derive some new simplified closure models for passive scalar advection and investigates the consistency of these models with fundamental properties of scalar turbulence. Whereas some properties, such as the existence of the Kolmogorov–Obukhov range and the existence of thermal equilibrium ensembles, follow the velocity case closely, phenomena special to the scalar case arise when the diffusive and viscous effects become important at different scales of motion. These include the Batchelor and Batchelor–Howells–Townsend ranges pertaining, respectively, to high and low molecular Schmidt number. We also consider the spectrum in the diffusive range that follows the Batchelor range. We conclude that improved elementary models can be made consistent with many nontrivial properties of scalar turbulence, but that such models have unavoidable limitations. 相似文献
14.
15.
16.
《Journal of Nonlinear Mathematical Physics》2013,20(2):167-178
We present a method devised by Jacobi to derive Lagrangians of any second-order differential equation: it consists in finding a Jacobi Last Multiplier. We illustrate the easiness and the power of Jacobi's method by applying it to several equations, including a class of equations recently studied by Musielak with his own method [Z. E. Musielak, Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients J. Phys. A: Math. Theor. 41 (2008) 055205], and in particular a Liènard type nonlinear oscillator and a second-order Riccati equation. Also, we derive more than one Lagrangian for each equation. 相似文献
17.
We present a differential calculus on the extension of the quantum plane obtained by considering that the (bosonic) generator x is invertible and by working with polynomials in ln x instead of polynomials in x. We construct the quantum Lie algebra associated with this extension and obtain its Hopf algebra structure and its dual Hopf algebra. 相似文献
18.
H.-J. Schmidt 《General Relativity and Gravitation》2003,35(5):937-938
We show that the square of the Weyl tensor can be negative by giving an example:
This metric has the property that in a neighbourhood of the origin,
相似文献
19.
Francis Valiquette 《Journal of Nonlinear Mathematical Physics》2018,25(2):211-246
The symmetry reduction algorithm for ordinary differential equations due to Sophus Lie is revisited using the method of equivariant moving frames. Using the recurrence formulas provided by the theory of equivariant moving frames, computations are performed symbolically without relying on the coordinate expressions for the canonical variables and the differential invariants occurring in Lie’s original procedure. 相似文献
20.