首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
We primarily deal with homogeneous isotropic turbulence and use a closure model for the von Kármán-Howarth equation to study several geometric properties of turbulent fluid dynamics. We focus our attention on the application of Riemannian geometry methods in turbulence. Some advantage of this approach consists in exploring the specific form of a closure model for the von Kármán-Howarth equation that enables to equip a model manifold (a cylindrical domain in the correlation space) by a family of inner metrics (length scales of turbulent motion) which depends on time. We show that for large Reynolds numbers (in the limit of large Reynolds numbers) the radius of this manifold can be evaluated in terms of the second-order structure function and the correlation distance. This model manifold presents a shrinking cylindrical domain as time evolves. This result is derived by using a selfsimilar solution of the closure model for the von Kármán-Howarth equation under consideration. We demonstrate that in the new variables the selfsimilar solution obtained coincides with the element of Beltrami surface (or pseudo-sphere): a canonical surface of the constant sectional curvature equals − 1.   相似文献   

2.
This article discusses the covariance correlation tensor (CCT) in quantum network theory for four Bell bases in detail. Furthermore, it gives the expression of the density operator in terms of CCT for a quantum network of three nodes, thus gives the criterion of entanglement for this case, i.e. the conditions of complete separability and partial separability for a given quantum state of three bodies. Finally it discusses the general case for the quantum network of m≥3 nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号