首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methanol diffusion in two polymer electrolyte membranes, Nafion 117 and BPSH 40 (a 40% disulfonated wholly aromatic polyarylene ether sulfone), was measured using a modified pulsed field gradient NMR method. This method allowed for the diffusion coefficient of methanol within the membrane to be determined while immersed in a methanol solution of known concentration. A second set of gradient pulses suppressed the signal from the solvent in solution, thus allowing the methanol within the membrane to be monitored unambiguously. Over a methanol concentration range of 0.5–8 M, methanol diffusion coefficients in Nafion 117 were found to increase from 2.9 × 10−6 to 4.0 × 10−6 cm2 s−1. For BPSH 40, the diffusion coefficient dropped significantly over the same concentration range, from 7.7 × 10−6 to 2.5 × 10−6cm2 s−1. The difference in diffusion behavior is largely related to the amount of solvent sorbed by the membranes. Increasing the methanol concentration results in an increase in solvent uptake for Nafion 117, while BPSH 40 actually excludes the solvent at higher concentrations. In contrast, diffusion of methanol measured via permeability measurements (assuming a partition coefficient of 1) was lower (1.3 × 10−6 and 6.4 × 10−7 cm2 s−1 for Nafion 117 and BPSH 40 respectively) and showed no concentration dependence. The differences observed between the two techniques are related to the length scale over which diffusion is monitored and the partition coefficient, or solubility, of methanol in the membranes as a function of concentration. For the permeability measurements, this length is equal to the thickness of the membrane (178 and 132 μm for Nafion 117 and BPSH 40 respectively) whereas the NMR method observes diffusion over a length of approximately 4–8 μm. Regardless of the measurement technique, BPSH 40 is a greater barrier to methanol permeability at high methanol concentrations.  相似文献   

2.
Electrodes were prepared by spin-coating spectroscopic graphite rods with a Nafion doped sol. Coating solutions consisting of Nafion:TEOS (tetraethoxysilane) ratios of 3:1 and 4:1 gave smooth films on the electrode surface. These modified electrodes were evaluated and compared with Nafion modified and bare spectroscopic graphite electrodes using methyl viologen (MV2+) as a representative cationic electroactive probe. Substantial partitioning of MV2+ into the Nafion:sol–gel matrix to the electrode surface was observed by cyclic voltammetry and square wave voltammetry. Cyclic voltammograms of MV2+ in 0.1 M NaCl at Nafion:sol–gel 4:1 modified electrodes showed a reversible reduction to MV+ with E0′=−0.695 V vs. Ag/AgCl. Results of scan rate variation showed the wave to be characterized by semi-infinite diffusion for scan rates in the range 50–500 mV/s. Slowing the scan rate below 50 mV/s resulted in a transition to thin-layer behavior. MV2+ partitioned much more quickly into the sol–gel-Nafion modified electrodes compared to pure Nafion modified electrodes. Reversibility of the MV2+-loaded modified Nafion-doped sol–gel coatings on electrodes was obtained by soaking in 1 M NaCl solution. Concentration calibration plots for MV2+ at the sol–gel-Nafion modified electrodes were nonlinear. Substantial enhancement of current signal at low concentrations was observed by square wave voltammetry.  相似文献   

3.
以含3,3'-二烯丙基双酚 A 结构单元的聚醚醚酮为基膜材料, 通过自由基加成反应在取代基上引入磺酸基团, 合成侧链型磺化聚醚醚酮(SPEEK)质子交换膜. 用傅里叶变换红外(FTIR)光谱、 核磁共振氢谱(1H NMR)、 热重分析(TG)和扫描电子显微镜(SEM)等方法对 SPEEK 的结构进行表征. 实验结果表明, 巯基丙磺酸被接枝在聚醚醚酮侧基上, SPEEK 膜具有明显的亲水疏水微相分离形貌, 磺酸基团相互聚集形成离子通道. SPEEK 膜离子交换容量为 2.12 mmol/g, 钒离子渗透率为 1.54×10-6 cm2/min, 低于Nafion117 膜的钒离子渗透率, 阻钒能力优于 Nafion117 膜. 以 SPEEK-4 膜组装电池的自放电时间约为130 h, 长于 Nafion117 膜的 66 h. 电池充放电循环 50 次, SPEEK-4 膜的库仑效率、 电压效率和能量效率没有明显降低, 显示出良好的稳定性.  相似文献   

4.
Fine particle superacidic sulfated zirconia (SO42−/ZrO2, S-ZrO2) was synthesized by ameliorated method, and composite membranes with different S-ZrO2 contents were prepared by a recasting procedure from a suspension of S-ZrO2 powder and Nafion solution. The physico-chemical properties of the membranes were studied by ion exchange capacity (IEC) and liquid water uptake measurements, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, thermogravimetry–mass spectrometry (TG–MS) and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the IEC of composite membrane increased with the content of S-ZrO2, S-ZrO2 was compatible with the Nafion matrix, the incorporation of the S-ZrO2 could increase the crystallinity and also improve the initial degradation temperature of the composite membrane. The performance of single cell was the best when the S-ZrO2 content was 15 wt.%, and achieved 1.35 W/cm2 at 80 °C and 0.99 W/cm2 at 120 °C based on H2/O2 and at a pressure of 2 atm, the performance of the single cell with optimized S-ZrO2 was far more than that of the Nafion at the same condition (e.g. 1.28 W/cm2 at 80 °C, 0.75 W/cm2 at 120 °C). The 15 wt.% S-ZrO2/Nafion composite membrane showed lower fuel cell internal resistance than Nafion membranes at high temperature and low relative humidity (RH).  相似文献   

5.
Hu SQ  Xie JW  Xu QH  Rong KT  Shen GL  Yu RQ 《Talanta》2003,61(6):769-777
An electrochemical immunosensor for the direct determination of paraoxon has been developed based on the biocomposites of gold nanoparticles loaded with paraoxon antibodies. The biocomposites are immobilized on the glassy carbon electrode (GCE) using Nafion membrane. On the immunosensor prepared paraoxon shows well-shaped CV with reduction and oxidation peaks located −0.08 and −0.03 mV versus SCE, respectively. The detection of paraoxon performed at −0.03 mV is beneficial for guaranteeing sufficient selectivity. The amount of the biocomposite consisting gold nanoparticles loaded with antibodies and the volume of Nafion solution used for fabricating the immunosensor have been studied to ensure sensitivity and conductivity of the immunosensor. The immunosensor has been employed for monitoring the concentrations of paraoxon in aqueous samples up to 1920 μg l−1 with a detection limit of 12 μg l−1.  相似文献   

6.
电化学沉积制备纳米结构铜电极及其葡萄糖检测性能   总被引:1,自引:0,他引:1  
利用电化学沉积法制备了高电活性的纳米结构铜电极材料, 采用扫描电子显微镜和电化学方法分别对电极表面形貌和电化学性能进行了表征, 研究了实验参数对葡萄糖电氧化活性的影响. 结果表明, 改变沉积条件可以调控沉积铜的形貌及电催化活性. 在最佳条件下制备的铜纳米结构电极对葡萄糖检测的灵敏度为1310 μA·L/mmol, 检出限为5.0×10-7 mol/L(S/N=3).  相似文献   

7.
Agnihotri NK  Singh VK  Singh HB 《Talanta》1993,40(12):1851-1859
Derivative photometric methods for trace analysis of Th(IV) and UO2(II), and their simultaneous determination in mixtures using 5,8-dihydroxy-1,4-naphthoquinone in a micellar medium are reported. Molar absorptivity and Sandell's sensitivity of 1:2 Th(IV) and 1:1 UO2(II) complexes at their λmax, 614.5 nm and 637.0 nm are, 1.19 × 104 1/mol/cm and 1.12 × 104 1/mol/cm and 1.95 × 10−2 μg/cm2 and 2.13 × 10−2 μg/cm2 μg/cm2, respectively. Calibration graph is linear over the range 9.28 × 10−2−18.56 μg/ml of Th(IV) and 9.52 × 10−2−19.04 μg/ml of UO2(II). Though presence of Th(IV) and UO2(II) causes interference in each others determination, 9.28 × 10−1−9.28 μg/ml Th(IV) and 9.52 × 10−1−9.52 μg/ml UO2(II) when present together, can be simultaneously determined using derivative spectra.  相似文献   

8.
采用原位氧化技术调整316L不锈钢(SS316L)基体元素Cr和Ni在界面的浓度和分布, 形成了Ni和Cr富集改性界面. 应用计时电位技术, 通过Cr和Ni改性层催化草酸溶液中的苯胺单体在其表面吸附并聚合, 在SS316L表面沉积了附着力良好的聚苯胺(PANI)膜. 与SS316L相比, 表面富Ni-Cr的SS316L在涂覆PANI膜后, 在80 ℃ 0.5 mol/L H2SO4+5 mg/L F-溶液中阳极和阴极的腐蚀电位分别提高470和500 mV, 维钝电流均下降2~3个数量级; 在模拟质子交换膜燃料电池运行环境中, 经36000 s恒电位极化, 其阳极和阴极的腐蚀电流分别下降约1和2个数量级, 腐蚀速度分别约为6~9 和< 5 μA/cm2; 在1.4 MPa压力下, 聚苯胺膜层与Toray 060碳纸间接触电阻下降约250 mΩ·cm2. SS316L表面形成富Ni-Cr改性层并涂覆聚苯胺膜后, 其耐蚀性和导电性均明显优于原始SS316L, 这主要取决于富Ni-Cr改性层的结构、 组成和聚苯胺膜的厚度.  相似文献   

9.
An amperometric mediated sensor for glucose has been contrived by using bovine serum albumin and glutaraldehyde to immobilize glucose oxidase on a Nafion-tetrathiafulvalene (TTF) modified electrode. It is further coated by Nafion. The inner Nafion membrane can prevent leaking of tetrathiafulvalene; the outer Nafion film serves as a barrier to electroactive anionic interferents such as ascorbate and urate and protects the biosensor from fouling agents. The experiment shows that TTF+ and TTF2+ can oxidize the reduced flavin adenine dinucleotide (FADH2) of glucose oxidase. The biosensor responds to glucose in less than 50 s and its calibration curve is linear from 3.0 × 10−4 to l.0 × 10−2 M.  相似文献   

10.
Yamamoto K  Zeng H  Shen Y  Ahmed MM  Kato T 《Talanta》2005,66(5):1175-1180
An amperometric glucose ring-disk biosensor based on a ruthenium complex mediator of low redox potential was fabricated and evaluated. This thin-layer radial flow microsensor (10 μl) with ring-disk working electrode displayed remarkable amperometric sensitivity. For Ru33-O)(AcO)6(Py)3(ClO4) (Ru-Py), a trinuclear oxo-acetate bridged cluster, a reversible redox curve of low redox potential and narrow potential window (redox potentials were −0.190 and −0.106 V versus Ag/AgCl wire, respectively) was observed, which is comparable to many reported mediators such as ferrocene derivatives and other ruthenium complexes. The glucose and hydrogen peroxide assays were carried out with this complex-modified electrode Ru-Py-HRP-GOx/Nafion. The sensitivity was obtained 24 nA (15.4 mA M−1 cm−2) for 10 μM glucose and 126 nA (160 mA M−1 cm−2) for 5 μM H2O2, respectively with a working potential at 0 V versus Ag/AgCl. Ascorbic acid was studied as interference to the glucose assay. The application of 0 V potential versus Ag/AgCl did not avoid the occurrence of the oxidation of ascorbic acid, however, the pre-coating of ascorbate oxidase on the disk part of the ring-disk working electrode efficiently pre-oxidized the ascorbic acid and hence eliminated its interference on the glucose response. The practical reliability was also evaluated by assaying the dialysate from the prefrontal cortex of Wistar rats.  相似文献   

11.
通过电沉积方法分别在镀铂石英晶片和铂基底上制备了电活性铁氰化镍膜,并考察了膜电极在含钇离子溶液中的电控离子交换性能. 在0.1 mol·L-1的硝酸钇溶液中,使用循环伏安法及石英晶体微天平技术测试考察了铁氰化镍膜对钇离子的置入释放性能及对应的质量变化,同时比较了铁氰化镍膜电极在Y(NO3)3和Sr(NO3)2溶液中的电化学性能. 在0.1 mol·L-1 [Y(NO3)3 + Sr(NO3)2]混合溶液中,通过循环伏安法分析了薄膜对Y3+/Sr2+离子的选择性. 用扫描电子显微镜观察了铁氰化镍膜的表面形貌,并通过X射线光电子能谱仪测定了膜在氧化和还原状态下的元素组成. 结果表明,铁氰化镍膜在含Y3+溶液中具有良好的离子交换行为,其中氧化过程薄膜质量减少,对应着钇离子的释放;还原过程薄膜质量增加,对应钇离子的置入;在0.0 V或0.9 V调控膜电极的氧化还原状态实现对钇离子的有效分离.  相似文献   

12.
The biocompatibility and substrate diffusion limiting properties for a range of diamond like carbon (DLC) coated microporous polycarbonate and DLC coated dialysis (haemodialysis) membranes have been studied. This characterisation builds upon previous findings where DLC coated membranes imparted enhanced enzyme electrode performance. In this study electrode linear ranges have been extended from 10 mM glucose for a 0.01 μm pore size membrane to 160 mM. These findings correlated with the duration of DLC deposition and associated reductions in permeability for glucose. Permeability coefficient ratios for both microporous and dialysis membranes were also found to be important with low glucose/O2 permeability ratios imparting extensions in glucose linear response range. DLC coated membranes employed within enzyme electrodes have also been shown to exhibit enhanced haemocompatibility as determined by both sensitivity change and surface deposition of blood components examined by scanning electron microscopy. Correlations are made between the reduced losses in sensor response to biofouling/ working electrode passivation processes, and extended linear ranges that DLC coated membranes may impart to enzyme electrode performance. Particular reference is made to the determination of glucose levels within whole blood.  相似文献   

13.
Stripping analysis has been widely recognised as a powerful tool for trace metal analysis. Its remarkable sensitivity is attributed to the combination of a preconcentration step coupled with differential measurements that generate an extremely favourable signal-to-noise ratio. Mercury electrodes have been traditionally employed for achieving high reproducibility and sensitivity of the stripping technique. However, because of the toxicity of mercury, new alternative electrode materials are highly desired, particularly for on-site environmental monitoring of trace pollutants. Bismuth is an electrode material characterized by its low toxicity and its ability to form alloys with some metals of interest like cadmium, lead or zinc, allowing their preconcentration at the electrode surface. We present here the preparation of Cu/Nafion/Bi electrodes and their application to heavy metal analysis by anodic stripping voltammetry. First, the main limitations of the basic Cu/Bi electrode for on-site monitoring in natural waters are highlighted. Then the modification of the Cu/Bi electrode by a Nafion membrane is presented. The analytical performances of this new electrode for trace cadmium and lead analysis were evaluated in non-deaerated solutions. Linear calibration curves were obtained in synthetic solutions for concentrations ranging from 2 to 12 and 2 to 18 μg L−1 for cadmium and lead, respectively, with relative standard deviations lower than 5% (n = 15). The analytical methodology was then successfully applied to monitor the Cd2+ and Pb2+ content in real samples such as ground water and aquatic plant extracts. The results favourably compared to those obtained using a mercury drop electrode and were validated by ICP-MS.  相似文献   

14.
Prussian blue has been formed by cyclic voltammetry onto the basal pyrolytic graphite surface to prepare a chemically modified electrode which provides excellent electrocatalysis for both oxidation and reduction of hydrogen peroxide. It is found for the first time that glucose oxidase or -amino oxidase can be incorporated into a Prussian blue film during its electrochemical growth process. Two amperometric biosensors were fabricated by electrochemical codeposition, and the resulting sensors were protected by coverage with a thin film of Nafion. The influence of various experimental conditions was examined for optimum analytical performance. The glucose sensor responds rapidly to substrates with a detection limit of 2 × 10−6 M and a linear concentration range of 0.01–3 mM. There was no interference from 2 mM ascorbic acid or uric acid. Another ( -amino acid) sensor gave a detection limit of 3 × 10−5 M -alanine, injected with a linear concentration range of 7.0 × 10−5-1.4 × 10−2 M. Glucose and -amino acid sensors remain relatively stable for 20 and 15 days, respectively. There is no obvious interference from anion electroactive species due to a low operating potential and excellent permselectivity of Nafion.  相似文献   

15.
Kapoor J  Kumar A  Gupta U  Rao AL 《Talanta》1994,41(12):2061-2065
A rapid, simple, direct, and sensitive method has been developed for the determination of maneb (manganese ethylenebisdithiocarbamate) based on the formation of manganese-4-(2′-pyridylazo) resorcinol complex by a ligand displacement reaction, which is rendered water soluble by a cationic surfactant cetyltrimethylammonium bromide (CTAB) by the formation of an ion association complex. Beer's law is obeyed over the concentration range 0.08–2.4 μg/ml of the final solution at 500 nm in pH range 8–12. The molar absorptivity and Sandell's sensitivity are calculated to be 8.84 × 104 l.mol−1.cm−1 and 0.003 μg/cm2, respectively. The developed method has been applied to the determination of maneb in commercial formulations, synthetic mixture, grain samples and vegetables.  相似文献   

16.
Novel ultrafiltration membranes were prepared by simple blending of polyethersulfone (PES) and soybean phosphatidylcholine (SPC). X-ray photoelectron spectroscopy (XPS) and water contact angle measurements indicated SPC enrichment at the membrane surfaces. The immobilization and arrangement of PC groups at surfaces rendered the membranes more hydrophilic. BSA adsorption amount decreased from 56.2 μg/cm2 for SPC-free PES membrane to 2.4 μg/cm2 for PES/SPC blend membrane. The fouling-resistant property of the blend membranes was improved considerably with an increase of SPC content while the pure water permeation flux decreased remarkably. Using PEG/PVP mixture instead of PEG as pore-forming agent increased pure water flux of PES/SPC blend membrane to some extent.  相似文献   

17.
Automated sequential injection (SIA) method for chemiluminescence (CL) determination of nonsteroidal anti-inflammatory drug indomethacin (I) was devised. The CL radiation was emitted in the reaction of I (dissolved in aqueous 50% v/v ethanol) with intermediate reagent tris(2,2′-bipyridyl)ruthenium(III) (Ru(bipy)33+) in the presence of acetate. The Ru(bipy)33+ was generated on-line in the SIA system by the oxidation of 0.5 mM tris(2,2′-bipyridyl)ruthenium(II) (Ru(bipy)32+) with Ce(IV) ammonium sulphate in diluted sulphuric acid. The optimum sequence, concentrations, and aspirated volumes of reactant zones were: 15 mM Ce(IV) in 50 mM sulphuric acid 41 μL, 0.5 mM Ru(bipy)32+ 30 μL, 0.4 M Na acetate 16 μL and I sample 15 μL; the flow rates were 60 μL s−1 for the aspiration into the holding coil and 100 μL s−1 for detection. Calibration curve relating the intensity of CL (peak height of the transient CL signal) to concentration of I was curvilinear (second order polynomial) for 0.1–50 μM I (r = 0.9997; n = 9) with rectilinear section in the range 0.1–10 μM I (r = 0.9995; n = 5). The limit of detection (3σ) was 0.05 μM I. Repeatability of peak heights (R.S.D., n = 10) ranged between 2.4% (0.5 μM I) and 2.0% (7 μM I). Sample throughput was 180 h−1. The method was applied to determination of 1 to 5% of I in semisolid dosage forms (gels and ointments). The results compared well with those of UV spectrophotometric method.  相似文献   

18.
A highly selective, fast and stable biosensor for determination of glucose in soluble coffee has been developed. The biosensor electrode consist of a thin film of ferric hexacyanoferrate (Prussian Blue or PB) electrodeposited on the glassy carbon electrode (GCE) (to provide a catalytic surface for the detection of hydrogen peroxide) glucose oxidase immobilized on top of the electrode and a Nafion® polymer layer. The stability of the PB film and the biosensor was evaluated by injecting standard-solution (50 μM H2O2 and 0.5 mM glucose) during 4 h in a flow-injection system with the electrodes polarized at −50 mV versus Ag/AgCl. The system is able to handle about 60 samples per hour and is very stable and suitable for industrial control. Determination of glucose in the range 2.5 and 15% (w/v) in phosphate buffer with precision (r.s.d. < 1.5%) has been achieved and is in agreement with the conventional procedures. Linear calibration in the range of 0.15 and 2.50 mM with detection limits of ca. 0.03 mM has been obtained. The morphology of the enzyme glucose oxidase on the modified electrode has been analyzed by scanning electron microscopy (SEM) measurements.  相似文献   

19.
Carbon fibers are proposed as a support electrode for a mercury film electrode. The response of these electrodes is evaluated for use in differential pulse anodic stripping voltammetry. The mercury film is deposited in situ in aqueous solution and used to quantify cadmium in solutions of cadmium salts and organo cadmium compounds in the 1–10 μg l-1 (ppb) concentration range. The good resolution and extremely low background current obtained allow a limit of detection at 0.04 μg Cd l-1.  相似文献   

20.
Sawant SS  Anuse MA  Chavan MB 《Talanta》1996,43(12):2137-2142
A solution of n-octylaniline in chloroform extracts rhenium selectively from 0.12–0.16 M nitric acid medium. Rhenium from the organic phase is backstripped with 5% aqueous ammonia solution and estimated spectrophotometrically with 5-chloro-2-hydroxythiobenzhydrazide (5-Cl-2-OHTBH). 5-Cl-2-OHTBH forms a blue complex with rhenium on heating in the acidity range 0.40–3.5 M HCl. The complex is extracted into chloroform and its absorbance is measured at 580 nm. The complex is stable for more than 12 h with a molar extinction coefficient of 9.0 × 103l mole−1 cm−1 and a Sandell sensitivity of 0.019 μg cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号