首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The weighted least-squares solutions of coupled singular matrix equations are too difficult to obtain by applying matrices decomposition. In this paper, a family of algorithms are applied to solve these problems based on the Kronecker structures. Subsequently, we construct a computationally efficient solutions of coupled restricted singular matrix equations. Furthermore, the need to compute the weighted Drazin and weighted Moore–Penrose inverses; and the use of Tian's work and Lev-Ari's results are due to appearance in the solutions of these problems. The several special cases of these problems are also considered which includes the well-known coupled Sylvester matrix equations. Finally, we recover the iterative methods to the weighted case in order to obtain the minimum D-norm G-vector least-squares solutions for the coupled Sylvester matrix equations and the results lead to the least-squares solutions and invertible solutions, as a special case.  相似文献   

2.
This paper is concerned with weighted least squares solutions to general coupled Sylvester matrix equations. Gradient based iterative algorithms are proposed to solve this problem. This type of iterative algorithm includes a wide class of iterative algorithms, and two special cases of them are studied in detail in this paper. Necessary and sufficient conditions guaranteeing the convergence of the proposed algorithms are presented. Sufficient conditions that are easy to compute are also given. The optimal step sizes such that the convergence rates of the algorithms, which are properly defined in this paper, are maximized and established. Several special cases of the weighted least squares problem, such as a least squares solution to the coupled Sylvester matrix equations problem, solutions to the general coupled Sylvester matrix equations problem, and a weighted least squares solution to the linear matrix equation problem are simultaneously solved. Several numerical examples are given to illustrate the effectiveness of the proposed algorithms.  相似文献   

3.
It is well known that the Sylvester matrix equation AX + XB = C has a unique solution X if and only if 0 ∉ spec(A) + spec(B). The main result of the present article are explicit formulas for the determinant of X in the case that C is one-dimensional. For diagonal matrices A, B, we reobtain a classical result by Cauchy as a special case.The formulas we obtain are a cornerstone in the asymptotic classification of multiple pole solutions to integrable systems like the sine-Gordon equation and the Toda lattice. We will provide a concise introduction to the background from soliton theory, an operator theoretic approach originating from work of Marchenko and Carl, and discuss examples for the application of the main results.  相似文献   

4.
ADI preconditioned Krylov methods for large Lyapunov matrix equations   总被引:1,自引:0,他引:1  
In the present paper, we propose preconditioned Krylov methods for solving large Lyapunov matrix equations AX+XAT+BBT=0. Such problems appear in control theory, model reduction, circuit simulation and others. Using the Alternating Direction Implicit (ADI) iteration method, we transform the original Lyapunov equation to an equivalent symmetric Stein equation depending on some ADI parameters. We then define the Smith and the low rank ADI preconditioners. To solve the obtained Stein matrix equation, we apply the global Arnoldi method and get low rank approximate solutions. We give some theoretical results and report numerical tests to show the effectiveness of the proposed approaches.  相似文献   

5.
Let L be an Hermitian linear functional defined on the linear space of Laurent polynomials. It is very well known that the Gram matrix of the associated bilinear functional in the linear space of polynomials is a Toeplitz matrix. In this contribution we analyze some linear spectral transforms of L such that the corresponding Toeplitz matrix is the result of the addition of a constant in a subdiagonal of the initial Toeplitz matrix. We focus our attention in the analysis of the quasi-definite character of the perturbed linear functional as well as in the explicit expressions of the new monic orthogonal polynomial sequence in terms of the first one.  相似文献   

6.
The theme of the present paper is to introduce and study two different versions of tensor products of functional models, one over the underlying field and the other over the corresponding algebra of polynomials, as well as related models based on the Kronecker product of polynomial matrices. In the process, we study the Sylvester equation and its reduction to a polynomial matrix equation. We analyse the relation between the two tensor products and use this to elucidate the role of the Anderson-Jury generalized Bezoutians in this context.  相似文献   

7.
For a given nonderogatory matrix A, formulas are given for functions of A in terms of Krylov matrices of A. Relations between the coefficients of a polynomial of A and the generating vector of a Krylov matrix of A are provided. With the formulas, linear transformations between Krylov matrices and functions of A are introduced, and associated algebraic properties are derived. Hessenberg reduction forms are revisited equipped with appropriate inner products and related properties and matrix factorizations are given.  相似文献   

8.
We investigate simultaneous solutions of the matrix Sylvester equations AiX-XBi=Ci,i=1,2,…,k, where {A1,…,Ak} and {B1,…,Bk} are k-tuples of commuting matrices of order m×m and p×p, respectively. We show that the matrix Sylvester equations have a unique solution X for every compatible k-tuple of m×p matrices {C1,…,Ck} if and only if the joint spectra σ(A1,…,Ak) and σ(B1,…,Bk) are disjoint. We discuss the connection between the simultaneous solutions of Sylvester equations and related questions about idempotent matrices separating disjoint subsets of the joint spectrum, spectral mapping for the differences of commuting k-tuples, and a characterization of the joint spectrum via simultaneous solutions of systems of linear equations.  相似文献   

9.
Amitsur’s formula, which expresses det(A + B) as a polynomial in coefficients of the characteristic polynomial of a matrix, is generalized for partial linearizations of the pfaffian of block matrices. As applications, in upcoming papers we determine generators for the SO(n)-invariants of several matrices and relations for the O(n)-invariants of several matrices over a field of arbitrary characteristic.  相似文献   

10.
For any univariate polynomial with coefficients in a differential field of characteristic zero and any integer, q, there exists an associated nonzero linear ordinary differential equation (LODE) with the following two properties. Each term of the LODE lies in the differential field generated by the rational numbers and the coefficients of the polynomial, and the qth power of each root of the polynomial is a solution of this LODE. This LODE is called a qth power resolvent of the polynomial. We will show how one can get a resolvent for the logarithmic derivative of the roots of a polynomial from the αth power resolvent of the polynomial, where α is an indeterminate that takes the place of q. We will demonstrate some simple relations among the algebraic and differential equations for the roots and their logarithmic derivatives. We will also prove several theorems regarding linear relations of roots of a polynomial over constants or the coefficient field of the polynomial depending upon the (nondifferential) Galois group. Finally, we will use a differential resolvent to solve the Riccati equation.  相似文献   

11.
An n×n ray pattern matrix S is said to be spectrally arbitrary if for every monic nth degree polynomial f(λ) with coefficients from C, there is a complex matrix in the ray pattern class of S such that its characteristic polynomial is f(λ). In this article we give new classes of spectrally arbitrary ray pattern matrices.  相似文献   

12.
We use basic properties of infinite lower triangular matrices and the connections of Toeplitz matrices with generating-functions to obtain inversion formulas for several types of q-Pascal matrices, determinantal representations for polynomial sequences, and identities involving the q-Gaussian coefficients. We also obtain a fast inversion algorithm for general infinite lower triangular matrices.  相似文献   

13.
In this paper, we introduce the generalized Leibniz functional matrices and study some algebraic properties of such matrices. To demonstrate applications of these properties, we derive several novel factorization forms of some well-known matrices, such as the complete symmetric polynomial matrix and the elementary symmetric polynomial matrix. In addition, by applying factorizations of the generalized Leibniz functional matrices, we redevelop the known results of factorizations of Stirling matrices of the first and second kind and the generalized Pascal matrix.  相似文献   

14.
First, we show that Sturm algorithm and Sylvester algorithm, which compute the number of real roots of a given univariate polynomial, lead to two dual tridiagonal determinantal representations of the polynomial. Next, we show that the number of real roots of a polynomial given by a tridiagonal determinantal representation is greater than the signature of this representation.  相似文献   

15.
Recently, Xue etc. \cite{28} discussed the Smith method for solving Sylvester equation $AX+XB=C$, where one of the matrices $A$ and $B$ is at least a nonsingular $M$-matrix and the other is an (singular or nonsingular) $M$-matrix. Furthermore, in order to find the minimal non-negative solution of a certain class of non-symmetric algebraic Riccati equations, Gao and Bai \cite{gao-2010} considered a doubling iteration scheme to inexactly solve the Sylvester equations. This paper discusses the iterative error of the standard Smith method used in \cite{gao-2010} and presents the prior estimations of the accurate solution $X$ for the Sylvester equation. Furthermore, we give a new version of the Smith method for solving discrete-time Sylvester equation or Stein equation $AXB+X=C$, while the new version of the Smith method can also be used to solve Sylvester equation $AX+XB=C$, where both $A$ and $B$ are positive definite. % matrices. We also study the convergence rate of the new Smith method. At last, numerical examples are given to illustrate the effectiveness of our methods  相似文献   

16.
The purpose of this paper is to develop compact expressions for the Fisher information matrix (FIM) of a Gaussian stationary vector autoregressive and moving average process with exogenous or input variables, a vector ARMAX or VARMAX process. We develop a representation of the FIM based on multiple Sylvester matrices. An extension of this representation yields another one but in terms of tensor Sylvester matrices. In order to obtain the results presented in this paper, the approach used in [A. Klein, G. Mélard, P. Spreij, On the resultant property of the Fisher information matrix of a vector ARMA process, Linear Algebra Appl. 403 (2005) 291-313] is extended.  相似文献   

17.
For when the Sylvester matrix equation has a unique solution, this work provides a closed form solution, which is expressed as a polynomial of known matrices. In the case of non-uniqueness, the solution set of the Sylvester matrix equation is a subset of that of a deduced equation, which is a system of linear algebraic equations.  相似文献   

18.
For an abelian group Γ, a formula to compute the characteristic polynomial of a Γ-graph has been obtained by Lee and Kim [Characteristic polynomials of graphs having a semi-free action, Linear algebra Appl. 307 (2005) 35-46]. As a continuation of this work, we give a computational formula for generalized characteristic polynomial of a Γ-graph when Γ is a finite group. Moreover, after showing that the reciprocal of the Bartholdi zeta function of a graph can be derived from the generalized characteristic polynomial of a graph, we compute the reciprocals of the Bartholdi zeta functions of wheels and complete bipartite graphs as an application of our formula.  相似文献   

19.
There is a well-established instability index theory for linear and quadratic matrix polynomials for which the coefficient matrices are Hermitian and skew-Hermitian. This theory relates the number of negative directions for the matrix coefficients which are Hermitian to the total number of unstable eigenvalues for the polynomial. Herein we extend the theory to ?-even matrix polynomials of any finite degree. In particular, unlike previously known cases we show that the instability index depends upon the size of the matrices when the degree of the polynomial is greater than two. We also consider Hermitian matrix polynomials, and derive an index which counts the number of eigenvalues with nonpositive imaginary part. The results are refined if we consider the Hermitian matrix polynomial to be a perturbation of a ?-even polynomials; however, this refinement requires additional assumptions on the matrix coefficients.  相似文献   

20.
Six characterizations of the polynomial numerical hull of degree k are established for bounded linear operators on a Hilbert space. It is shown how these characterizations provide a natural distinction between interior and boundary points. One of the characterizations is used to prove that the polynomial numerical hull of any fixed degree k for a Toeplitz matrix whose symbol is piecewise continuous approaches all or most of that of the infinite-dimensional Toeplitz operator, as the matrix size goes to infinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号