首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Let XX be a finite graph. Let |V||V| be the number of its vertices and dd be its degree. Denote by F1(X)F1(X) its first spectral density function which counts the number of eigenvalues ≤λ2λ2 of the associated Laplace operator. We provide an elementary proof for the estimate F1(X)(λ)−F1(X)(0)≤2⋅(|V|−1)⋅d⋅λF1(X)(λ)F1(X)(0)2(|V|1)dλ for 0≤λ<10λ<1 which has already been proved by Friedman (1996) [3] before. We explain how this gives evidence for conjectures about approximating Fuglede–Kadison determinants and L2L2-torsion.  相似文献   

2.
For a (simple) graph G, the signless Laplacian of G is the matrix A(G)+D(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex degrees of G; the reduced signless Laplacian of G is the matrix Δ(G)+B(G), where B(G) is the reduced adjacency matrix of G and Δ(G) is the diagonal matrix whose diagonal entries are the common degrees for vertices belonging to the same neighborhood equivalence class of G. A graph is said to be (degree) maximal if it is connected and its degree sequence is not majorized by the degree sequence of any other connected graph. For a maximal graph, we obtain a formula for the characteristic polynomial of its reduced signless Laplacian and use the formula to derive a localization result for its reduced signless Laplacian eigenvalues, and to compare the signless Laplacian spectral radii of two well-known maximal graphs. We also obtain a necessary condition for a maximal graph to have maximal signless Laplacian spectral radius among all connected graphs with given numbers of vertices and edges.  相似文献   

3.
Subgraphs and the Laplacian spectrum of a graph   总被引:1,自引:0,他引:1  
Let G be a graph and H a subgraph of G. In this paper, a set of pairwise independent subgraphs that are all isomorphic copies of H is called an H-matching. Denoting by ν(H,G) the cardinality of a maximum H-matching in G, we investigate some relations between ν(H,G) and the Laplacian spectrum of G.  相似文献   

4.
A configuration of pebbles on the vertices of a graph is solvable if one can place a pebble on any given root vertex via a sequence of pebbling steps. A function is a pebbling threshold for a sequence of graphs if a randomly chosen configuration of asymptotically more pebbles is almost surely solvable, while one of asymptotically fewer pebbles is almost surely not. In this paper we tighten the gap between the upper and lower bounds for the pebbling threshold for the sequence of paths in the multiset model. We also find the pebbling threshold for the sequence of paths in the binomial model. Finally, we show that the spectrum of pebbling thresholds for graph sequences in the multiset model spans the entire range from n1/2 to n, answering a question of Czygrinow, Eaton, Hurlbert and Kayll. What the spectrum looks like above n remains unknown.  相似文献   

5.
Let G be a graph with n vertices and m edges. Let λ1λ2, … , λn be the eigenvalues of the adjacency matrix of G, and let μ1μ2, … , μn be the eigenvalues of the Laplacian matrix of G. An earlier much studied quantity is the energy of the graph G. We now define and investigate the Laplacian energy as . There is a great deal of analogy between the properties of E(G) and LE(G), but also some significant differences.  相似文献   

6.
In this paper, we obtain the following upper bound for the largest Laplacian graph eigenvalue λ(G):
  相似文献   

7.
We study the space of pictures of a graph G in complex projective d-space. The main result is that the homology groups (with integer coefficients) of are completely determined by the Tutte polynomial of G. One application is a criterion in terms of the Tutte polynomial for independence in the d-parallel matroids studied in combinatorial rigidity theory. For certain special graphs called orchards, the picture space is smooth and has the structure of an iterated projective bundle. We give a Borel presentation of the cohomology ring of the picture space of an orchard, and use this presentation to develop an analogue of the classical Schubert calculus.  相似文献   

8.
The expected commute times for a strongly connected directed graph are related to an asymmetric Laplacian matrix as a direct extension to similar well known formulas for undirected graphs. We show the close relationships between the asymmetric Laplacian and the so-called Fundamental matrix. We give bounds for the commute times in terms of the stationary probabilities for a random walk over the graph together with the asymmetric Laplacian and show how this can be approximated by a symmetrized Laplacian derived from a related weighted undirected graph.  相似文献   

9.
The Estrada index of a graph G is defined as , where λ1,λ2,…,λn are the eigenvalues of G. The Laplacian Estrada index of a graph G is defined as , where μ1,μ2,…,μn are the Laplacian eigenvalues of G. An edge grafting operation on a graph moves a pendent edge between two pendent paths. We study the change of Estrada index of graph under edge grafting operation between two pendent paths at two adjacent vertices. As the application, we give the result on the change of Laplacian Estrada index of bipartite graph under edge grafting operation between two pendent paths at the same vertex. We also determine the unique tree with minimum Laplacian Estrada index among the set of trees with given maximum degree, and the unique trees with maximum Laplacian Estrada indices among the set of trees with given diameter, number of pendent vertices, matching number, independence number and domination number, respectively.  相似文献   

10.
We give an explicit representation of the solutions of the Cauchy problem, in terms of series of hypergeometric functions, for the following class of partial differential equations with double characteristic at the origin:
(xkt+ax)(xkt+bx)u+cxk−1tu=0,  相似文献   

11.
On the third largest Laplacian eigenvalue of a graph   总被引:1,自引:0,他引:1  
In this article, a sharp lower bound for the third largest Laplacian eigenvalue of a graph is given in terms of the third largest degree of the graph.  相似文献   

12.
E. Győri 《Combinatorica》1989,9(1):101-102
Research partially supported bv Hungarian National Foundation for Scientific Research Grant no. 1812.  相似文献   

13.
If G is a connected undirected simple graph on n vertices and n+c-1 edges, then G is called a c-cyclic graph. Specially, G is called a tricyclic graph if c=3. Let Δ(G) be the maximum degree of G. In this paper, we determine the structural characterizations of the c-cyclic graphs, which have the maximum spectral radii (resp. signless Laplacian spectral radii) in the class of c-cyclic graphs on n vertices with fixed maximum degree . Moreover, we prove that the spectral radius of a tricyclic graph G strictly increases with its maximum degree when , and identify the first six largest spectral radii and the corresponding graphs in the class of tricyclic graphs on n vertices.  相似文献   

14.
Let L   be an n×nn×n matrix with zero row and column sums, n?3n?3. We obtain a formula for any minor of the (n−2)(n2)-th compound of L. An application to counting spanning trees extending a given forest is given.  相似文献   

15.
In this paper we find spectral bounds (Laplacian matrix) for the vertex and the edge betweenness of a graph. We also relate the edge betweenness with the isoperimetric number and the edge forwarding and edge expansion indices of the graph allowing a new upper bound on its diameter. The results are of interest as they can be used in the study of communication properties of real networks, in particular for dynamical processes taking place on them (broadcasting, network synchronization, virus spreading, etc.).  相似文献   

16.
17.
The splittance of an arbitrary graph is the minimum number of edges to be added or removed in order to produce a split graph (i.e. a graph whose vertex set can be partitioned into a clique and an independent set). The splittance is seen to depend only on the degree sequence of the graph, and an explicit formula for it is derived. This result allows to give a simple characterization of the degree sequences of split graphs. Worst cases for the splittance are determined for some classes of graphs (the class of all graphs, of all trees and of all planar graphs).  相似文献   

18.
19.
The smallest eigenvalue of the signless Laplacian   总被引:1,自引:0,他引:1  
Recently the signless Laplacian matrix of graphs has been intensively investigated. While there are many results about the largest eigenvalue of the signless Laplacian, the properties of its smallest eigenvalue are less well studied. The present paper surveys the known results and presents some new ones about the smallest eigenvalue of the signless Laplacian.  相似文献   

20.
We will prove that for every colouring of the edges of the Rado graph, (that is the countable homogeneous graph), with finitely many coulours, it contains an isomorphic copy whose edges are coloured with at most two of the colours. It was known [4] that there need not be a copy whose edges are coloured with only one of the colours. For the proof we use the lexicographical order on the vertices of the Rado graph, defined by Erdös, Hajnal and Pósa.Using the result we are able to describe a Ramsey basis for the class of Rado graphs whose edges are coloured with at most a finite number,r, of colours. This answers an old question of M. Pouzet.Supported by the French PRC Math-Info.Supported by NSERC of Canada Grant # 691325.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号