首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let V denote a vector space with finite positive dimension. We consider an ordered pair of linear transformations A:VV and A:VV that satisfy (i) and (ii) below:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
We call such a pair a Leonard pair on V. In this paper, we characterize the Leonard pairs using the notion of a tail. This notion is borrowed from algebraic graph theory.  相似文献   

2.
Let V denote a vector space with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy (i) and (ii) below:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
We call such a pair a Leonard pair on V. Let X denote the set of linear transformations X : V → V such that the matrix representing X with respect to the basis (i) is tridiagonal and the matrix representing X with respect to the basis (ii) is tridiagonal. We show that X is spanned by
  相似文献   

3.
Let V denote a vector space with finite positive dimension. We consider a pair of linear transformations A:VV and A:VV that satisfy (i) and (ii) below:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
We call such a pair a Leonard pair on V. Let (resp. ) denote a basis for V referred to in (i) (resp. (ii)). We show that there exists a unique linear transformation S:VV that sends v0 to a scalar multiple of vd, fixes w0, and sends wi to a scalar multiple of wi for 1?i?d. We call S the switching element. We describe S from many points of view.  相似文献   

4.
Let F denote a field and let V denote a vector space over F with finite positive dimension. We consider an ordered pair of F-linear transformations A:VV and A:VV that satisfy the following conditions: (i) each of A,A is diagonalizable on V; (ii) there exists an ordering of the eigenspaces of A such that AViV0+V1+?+Vi+1 for 0?i?d, where V-1:=0 and Vd+1:=0; (iii) there exists an ordering of the eigenspaces of A such that for 0?i?δ, where and . We call such a pair a Hessenberg pair on V. It is known that if the Hessenberg pair A,A on V is irreducible then d=δ and for 0?i?d the dimensions of Vi and coincide. We say a Hessenberg pair A,A on V is sharp whenever it is irreducible and .In this paper, we give the definitions of a Hessenberg system and a sharp Hessenberg system. We discuss the connection between a Hessenberg pair and a Hessenberg system. We also define a finite sequence of scalars called the parameter array for a sharp Hessenberg system, which consists of the eigenvalue sequence, the dual eigenvalue sequence and the split sequence. We calculate the split sequence of a sharp Hessenberg system. We show that a sharp Hessenberg pair is a tridiagonal pair if and only if there exists a nonzero nondegenerate bilinear form on V that satisfies 〈Au,v〉=〈u,Av〉 and 〈Au,v〉=〈u,Av〉 for all u,vV.  相似文献   

5.
Let K denote a field, and let V denote a vector space over K with finite positive dimension. By a Leonard pair on V we mean an ordered pair of linear transformations A : V → V and A : V → V that satisfy the following two conditions:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
Let (respectively v0v1, … , vd) denote a basis for V that satisfies (i) (respectively (ii)). For 0 ? i ? d, let ai denote the coefficient of , when we write as a linear combination of , and let denote the coefficient of vi, when we write Avi as a linear combination of v0v1, … , vd.In this paper we show a0 = ad if and only if . Moreover we show that for d ? 1 the following are equivalent; (i) a0 = ad and a1 = ad−1; (ii) and ; (iii) ai = adi and for 0 ? i ? d. These give a proof of a conjecture by the second author. We say A, A is balanced whenever ai = adi and for 0 ? i ? d. We say A,A is essentially bipartite (respectively essentially dual bipartite) whenever ai (respectively ) is independent of i for 0 ? i ? d. Observe that if A, A is essentially bipartite or dual bipartite, then A, A is balanced. For d ≠ 2, we show that if A, A is balanced then A, A is essentially bipartite or dual bipartite.  相似文献   

6.
7.
In this paper, we propose the two-sided hyperbolic SVD (2HSVD) for square matrices, i.e., A=UΣV[∗], where U and V[∗] are J-unitary (J=diag(±1)) and Σ is a real diagonal matrix of “double-hyperbolic” singular values. We show that, with some natural conditions, such decomposition exists without the use of hyperexchange matrices. In other words, U and V[∗] are really J-unitary with regard to J and not some matrix which is permutationally similar to matrix J. We provide full characterization of 2HSVD and completely relate it to the semidefinite J-polar decomposition.  相似文献   

8.
The following properties of the Holmes space H are established:
(i)
H has the Metric Approximation Property (MAP).
(ii)
The w-closure of the set of extreme points of the unit ball BH of the dual space H is the whole ball BH.
A family of compact subsets XU of the Urysohn space is described such that the Lipschitz-free space F(X) has a finite-dimensional decomposition and is not complemented in H.  相似文献   

9.
Each square complex matrix is unitarily similar to an upper triangular matrix with diagonal entries in any prescribed order. Let A=[aij] and B=[bij] be upper triangular n×n matrices that
are not similar to direct sums of square matrices of smaller sizes, or
are in general position and have the same main diagonal.
We prove that A and B are unitarily similar if and only if
  相似文献   

10.
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy (i) and (ii) below:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
We call such a pair a Leonard pair on V. Let diag(θ0θ1, … , θd) denote the diagonal matrix referred to in (ii) above and let denote the diagonal matrix referred to in (i) above. It is known that there exists a basis u0u1, … , ud for V and there exist scalars ?1?2, … , ?d in K such that Aui = θiui + ui+1 (0 ? i ? d − 1), Aud = θdud, , . The sequence ?1?2, … , ?d is called the first split sequence of the Leonard pair. It is known that there exists a basis v0v1, … , vd for V and there exist scalars ?1?2, … , ?d in K such that Avi = θdivi + vi+1 (0 ? i ? d − 1),Avd = θ0vd, , . The sequence ?1?2, … , ?d is called the second split sequence of the Leonard pair. We display some attractive formulae for the first and second split sequence that involve the trace function.  相似文献   

11.
Let F denote a field and let V denote a vector space over F with finite positive dimension. We consider a pair of linear transformations A:VV and A:VV that satisfy the following conditions: (i) each of A,A is diagonalizable; (ii) there exists an ordering of the eigenspaces of A such that AViVi-1+Vi+Vi+1 for 0?i?d, where V-1=0 and Vd+1=0; (iii) there exists an ordering of the eigenspaces of A such that for 0?i?δ, where and ; (iv) there is no subspace W of V such that AWW, AWW, W≠0, WV. We call such a pair a tridiagonal pair on V. It is known that d=δ and for 0?i?d the dimensions of coincide. The pair A,A is called sharp whenever . It is known that if F is algebraically closed then A,A is sharp. In this paper we classify up to isomorphism the sharp tridiagonal pairs. As a corollary, we classify up to isomorphism the tridiagonal pairs over an algebraically closed field. We obtain these classifications by proving the μ-conjecture.  相似文献   

12.
We prove the following: Let A and B be separable C*-algebras. Suppose that B is a type I C*-algebra such that
(i)
B has only infinite dimensional irreducible *-representations, and
(ii)
B has finite decomposition rank.
If
0→BCA→0  相似文献   

13.
In this paper it is shown that if TL(H) satisfies
(i)
T is a pure hyponormal operator;
(ii)
[T,T] is of rank two; and
(iii)
ker[T,T] is invariant for T,
then T is either a subnormal operator or the Putinar's matricial model of rank two. More precisely, if T|ker[T,T] has a rank-one self-commutator then T is subnormal and if instead T|ker[T,T] has a rank-two self-commutator then T is either a subnormal operator or the kth minimal partially normal extension, , of a (k+1)-hyponormal operator Tk which has a rank-two self-commutator for any kZ+. Hence, in particular, every weakly subnormal (or 2-hyponormal) operator with a rank-two self-commutator is either a subnormal operator or a finite rank perturbation of a k-hyponormal operator for any kZ+.  相似文献   

14.
Let K denote a field and let V denote a vector space over K with finite positive dimension.We consider a pair of K-linear transformations A:VV and A:VV that satisfy the following conditions: (i) each of A,A is diagonalizable; (ii) there exists an ordering of the eigenspaces of A such that AViVi-1+Vi+Vi+1 for 0?i?d, where V-1=0 and Vd+1=0; (iii) there exists an ordering of the eigenspaces of A such that for 0?i?δ, where and ; (iv) there is no subspace W of V such that AWW,AWW,W≠0,WV.We call such a pair a tridiagonal pair on V. It is known that d=δ and for 0?i?d the dimensions of coincide.In this paper we show that the following (i)-(iv) hold provided that K is algebraically closed: (i) Each of has dimension 1.(ii) There exists a nondegenerate symmetric bilinear form 〈,〉 on V such that 〈Au,v〉=〈u,Av〉 and 〈Au,v〉=〈u,Av〉 for all u,vV.(iii) There exists a unique anti-automorphism of End(V) that fixes each of A,A.(iv) The pair A,A is determined up to isomorphism by the data , where θi (resp.) is the eigenvalue of A (resp.A) on Vi (resp.), and is the split sequence of A,A corresponding to and .  相似文献   

15.
We show that it is consistent with ZFC that there exist:
(1)
An unbounded (with respect to ?) and strongly measure zero subgroup of ZN, but without the Menger property.
(2)
An unbounded (with respect to ?) and strongly measure zero subgroup of ZN with the Menger property which does not have the Rothberger property.
This answers the last two problems which remained from a classification project of Machura and Tsaban.  相似文献   

16.
A square matrix is nonderogatory if its Jordan blocks have distinct eigenvalues. We give canonical forms for
nonderogatory complex matrices up to unitary similarity, and
pairs of complex matrices up to similarity, in which one matrix has distinct eigenvalues.
The types of these canonical forms are given by undirected and, respectively, directed graphs with no undirected cycles.  相似文献   

17.
The two main results are:
A.
If a Banach space X is complementably universal for all subspaces of c0 which have the bounded approximation property, then X is non-separable (and hence X does not embed into c0).
B.
There is no separable Banach space X such that every compact operator (between Banach spaces) factors through X.
Theorem B solves a problem that dates from the 1970s.  相似文献   

18.
Let denote a field and V denote a nonzero finite-dimensional vector space over . We consider an ordered pair of linear transformations A:VV and A*:VV that satisfy (i)–(iii) below.
1. [(i)]Each of A,A* is diagonalizable on V.
2. [(ii)]There exists an ordering of the eigenspaces of A such that
where V-1=0, Vd+1=0.
3. [(iii)]There exists an ordering of the eigenspaces of A* such that
where , .
We call such a pair a Hessenberg pair on V. In this paper we obtain some characterizations of Hessenberg pairs. We also explain how Hessenberg pairs are related to tridiagonal pairs.
Keywords: Leonard pair; Tridiagonal pair; q-Inverting pair; Split decomposition  相似文献   

19.
Let V denote a vector space with finite positive dimension, and let (AA) denote a Leonard pair on V. As is known, the linear transformations A, A satisfy the Askey-Wilson relations
  相似文献   

20.
Let G be a Hausdorff topological group. It is shown that there is a class C of subspaces of G, containing all (but not only) precompact subsets of G, for which the following result holds:Suppose that for every real-valued discontinuous function on G there is a set AC such that the restriction mapping f|A has no continuous extension to G; then the following are equivalent:
(i)
the left and right uniform structures of G are equivalent,
(ii)
every left uniformly continuous bounded real-valued function on G is right uniformly continuous,
(iii)
for every countable set AG and every neighborhood V of the unit e of G, there is a neighborhood U of e in G such that AUVA.
As a consequence, it is proved that items (i), (ii) and (iii) are equivalent for every inframetrizable group. These results generalize earlier ones established by Itzkowitz, Rothman, Strassberg and Wu, by Milnes and by Pestov for locally compact groups, by Protasov for almost metrizable groups, and by Troallic for groups that are quasi-k-spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号