首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper provides further results on the perfect state transfer in integral circulant graphs (ICG graphs). The non-existence of PST is proved for several classes of ICG graphs containing an isolated divisor d0, i.e. the divisor which is relatively prime to all other divisors from dD?{d0}. The same result is obtained for classes of integral circulant graphs having the NSF property (i.e. each n/d is square-free, for every dD). A direct corollary of these results is the characterization of ICG graphs with two divisors, which have PST. A similar characterization is obtained for ICG graphs where each two divisors are relatively prime. Finally, it is shown that ICG graphs with the number of vertices n=2p2 do not have PST.  相似文献   

2.
The D-eigenvalues {μ1,μ2,…,…,μp} of a graph G are the eigenvalues of its distance matrix D and form the D-spectrum of G denoted by specD(G). The greatest D-eigenvalue is called the D-spectral radius of G denoted by μ1. The D-energy ED(G) of the graph G is the sum of the absolute values of its D-eigenvalues. In this paper we obtain some lower bounds for μ1 and characterize those graphs for which these bounds are best possible. We also obtain an upperbound for ED(G) and determine those maximal D-energy graphs.  相似文献   

3.
4.
We give an explicit construction of circulant graphs of very high energy. This construction is based on Gauss sums. We also show the Littlewood conjecture can be used to establish new result for a certain class of circulant graphs.  相似文献   

5.
Let Π = {S1, S2, . . . , Sk} be an ordered partition of the vertex set V (G) of a graph G. The partition representation of a vertex vV (G) with respect to Π is the k-tuple r(v|Π) = (d(v, S1), d(v, S2), . . . , d(v, Sk)), where d(v, S) is the distance between v and a set S. If for every pair of distinct vertices u, vV (G), we have r(u|Π) ≠ r(v|Π), then Π is a resolving partition and the minimum cardinality of a resolving partition of V (G) is called the partition dimension of G. We study the partition dimension of circulant graphs, which are Cayley graphs of cyclic groups. Grigorious et al. [On the partition dimension of circulant graphs] proved that pd(Cn(1, 2, . . . , t)) ≥ t + 1 for n ≥ 3. We disprove this statement by showing that if t ≥ 4 is even, then there exists an infinite set of values of n, such that . We also present exact values of the partition dimension of circulant graphs with 3 generators.  相似文献   

6.
We establish a useful correspondence between the closed walks in regular graphs and the walks in infinite regular trees, which, after counting the walks of a given length between vertices at a given distance in an infinite regular tree, provides a lower bound on the number of closed walks in regular graphs. This lower bound is then applied to reduce the number of the feasible spectra of the 4-regular bipartite integral graphs by more than a half.Next, we give the details of the exhaustive computer search on all 4-regular bipartite graphs with up to 24 vertices, which yields a total of 47 integral graphs.  相似文献   

7.
Let D be a connected oriented graph. A set SV(D) is convex in D if, for every pair of vertices x,yS, the vertex set of every x-y geodesic (x-y shortest dipath) and y-x geodesic in D is contained in S. The convexity numbercon(D) of a nontrivial oriented graph D is the maximum cardinality of a proper convex set of D. Let G be a graph. We define that SC(G)={con(D):D is an orientation of G} and SSC(G)={con(D):D is a strongly connected orientation of G}. In the paper, we show that, for any n?4, 1?a?n-2, and a≠2, there exists a 2-connected graph G with n vertices such that SC(G)=SSC(G)={a,n-1} and there is no connected graph G of order n?3 with SSC(G)={n-1}. Then, we determine that SC(K3)={1,2}, SC(K4)={1,3}, SSC(K3)=SSC(K4)={1}, SC(K5)={1,3,4}, SC(K6)={1,3,4,5}, SSC(K5)=SSC(K6)={1,3}, SC(Kn)={1,3,5,6,…,n-1}, SSC(Kn)={1,3,5,6,…,n-2} for n?7. Finally, we prove that, for any integers n, m, and k with , 1?k?n-1, and k≠2,4, there exists a strongly connected oriented graph D with n vertices, m edges, and convexity number k.  相似文献   

8.
A graph is called integral if the spectrum of its adjacency matrix has only integral eigenvalues. An eigenvalue of a graph is called main eigenvalue if it has an eigenvector such that the sum of whose entries is not equal to zero. In this paper, we show that there are exactly 25 connected integral graphs with exactly two main eigenvalues and index 3.  相似文献   

9.
In this paper, we classify the connected non-bipartite integral graphs with spectral radius three.  相似文献   

10.
A graph is Laplacian integral if the spectrum of its Laplacian matrix consists entirely of integers. We consider the class of constructably Laplacian integral graphs - those graphs that be constructed from an empty graph by adding a sequence of edges in such a way that each time a new edge is added, the resulting graph is Laplacian integral. We characterize the constructably Laplacian integral graphs in terms of certain forbidden vertex-induced subgraphs, and consider the number of nonisomorphic Laplacian integral graphs that can be constructed by adding a suitable edge to a constructably Laplacian integral graph. We also discuss the eigenvalues of constructably Laplacian integral graphs, and identify families of isospectral nonisomorphic graphs within the class.  相似文献   

11.
Valence-weightings are considered for shortest-path distance moments, as well as related weightings for the so-called “Wiener” polynomial. In the case of trees the valence-weighted quantities are found to be expressible as a combination of unweighted quantities. Further the weighted quantities for a so-called “thorny” graph are considered and shown to be related to the weighted and unweighted quantities for the underlying parent graph.  相似文献   

12.
The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs, which can be characterized by their vertex count n and a set D of divisors of n in such a way that they have vertex set Zn and edge set {{a,b}:a,bZn,gcd(a-b,n)∈D}. Using tools from convex optimization, we analyze the maximal energy among all integral circulant graphs of prime power order ps and varying divisor sets D. Our main result states that this maximal energy approximately lies between s(p-1)ps-1 and twice this value. We construct suitable divisor sets for which the energy lies in this interval. We also characterize hyperenergetic integral circulant graphs of prime power order and exhibit an interesting topological property of their divisor sets.  相似文献   

13.
Let λ1,λ2,…,λn be the eigenvalues of a graph G of order n. The energy of G is defined as E(G)=|λ1|+|λ2|+?+|λn|. Let be the graph obtained from two copies of C6 joined by a path Pn-10, Bn be the class of all bipartite bicyclic graphs that are not the graph obtained from two cycles Ca and Cb (a,b?10 and ab2 (mod 4)) joined by an edge. In this paper, we show that is the graph with maximal energy in Bn, which gives a partial solution to Gutman’s conjecture in Gutman and Vidovi? (2001) [I. Gutman, D. Vidovi?, Quest for molecular graphs with maximal energy: a computer experiment, J. Chem. Inf. Sci. 41 (2001) 1002-1005].  相似文献   

14.
15.
The unique graphs with minimum and second-minimum distance (distance signless Laplacian, respectively) spectral radii are determined among bicyclic graphs with fixed number of vertices.  相似文献   

16.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

17.
In this article we examine the adjacency and Laplacian matrices and their eigenvalues and energies of the general product (non-complete extended p-sum, or NEPS) of signed graphs. We express the adjacency matrix of the product in terms of the Kronecker matrix product and the eigenvalues and energy of the product in terms of those of the factor graphs. For the Cartesian product we characterize balance and compute expressions for the Laplacian eigenvalues and Laplacian energy. We give exact results for those signed planar, cylindrical and toroidal grids which are Cartesian products of signed paths and cycles.We also treat the eigenvalues and energy of the line graphs of signed graphs, and the Laplacian eigenvalues and Laplacian energy in the regular case, with application to the line graphs of signed grids that are Cartesian products and to the line graphs of all-positive and all-negative complete graphs.  相似文献   

18.
19.
An edge grafting theorem on the energy of unicyclic and bipartite graphs   总被引:1,自引:0,他引:1  
The energy of a graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. The edge grafting operation on a graph is certain kind of edge moving between two pendant paths starting from the same vertex. In this paper we show how the graph energy changes under the edge grafting operations on unicyclic and bipartite graphs. We also give some applications of this result on the comparison of graph energies between unicyclic or bipartite graphs.  相似文献   

20.
We study the energy (i.e., the sum of the absolute values of all eigenvalues) of so-called tadpole graphs, which are obtained by joining a vertex of a cycle to one of the ends of a path. By means of the Coulson integral formula and careful estimation of the resulting integrals, we prove two conjectures on the largest and second-largest energy of a unicyclic graph due to Caporossi, Cvetkovi?, Gutman and Hansen and Gutman, Furtula and Hua, respectively. Moreover, we characterise the non-bipartite unicyclic graphs whose energy is largest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号