首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let V be a linear subspace of Mn,p(K) with codimension lesser than n, where K is an arbitrary field and n?p. In a recent work of the author, it was proven that V is always spanned by its rank p matrices unless n=p=2 and K?F2. Here, we give a sufficient condition on codim V for V to be spanned by its rank r matrices for a given r∈?1,p-1?. This involves a generalization of the Gerstenhaber theorem on linear subspaces of nilpotent matrices.  相似文献   

2.
Let (K) be a field. Given an arbitrary linear subspace V of Mn(K) of codimension less than n-1, a classical result states that V generates the (K)-algebra Mn(K). Here, we strengthen this statement in three ways: we show that Mn(K) is spanned by the products of the form AB with (A,B)∈V2; we prove that every matrix in Mn(K) can be decomposed into a product of matrices of V; finally, when V is a linear perplane of Mn(K) and n>2, we show that every matrix in Mn(K) is a product of two elements of V.  相似文献   

3.
Let Mm,n(B) be the semimodule of all m×n Boolean matrices where B is the Boolean algebra with two elements. Let k be a positive integer such that 2?k?min(m,n). Let B(m,n,k) denote the subsemimodule of Mm,n(B) spanned by the set of all rank k matrices. We show that if T is a bijective linear mapping on B(m,n,k), then there exist permutation matrices P and Q such that T(A)=PAQ for all AB(m,n,k) or m=n and T(A)=PAtQ for all AB(m,n,k). This result follows from a more general theorem we prove concerning the structure of linear mappings on B(m,n,k) that preserve both the weight of each matrix and rank one matrices of weight k2. Here the weight of a Boolean matrix is the number of its nonzero entries.  相似文献   

4.
5.
Let KE, KE be convex cones residing in finite-dimensional real vector spaces. An element y in the tensor product EE is KK-separable if it can be represented as finite sum , where xlK and for all l. Let S(n), H(n), Q(n) be the spaces of n×n real symmetric, complex Hermitian and quaternionic Hermitian matrices, respectively. Let further S+(n), H+(n), Q+(n) be the cones of positive semidefinite matrices in these spaces. If a matrix AH(mn)=H(m)⊗H(n) is H+(m)⊗H+(n)-separable, then it fulfills also the so-called PPT condition, i.e. it is positive semidefinite and has a positive semidefinite partial transpose. The same implication holds for matrices in the spaces S(m)⊗S(n), H(m)⊗S(n), and for m?2 in the space Q(m)⊗S(n). We provide a complete enumeration of all pairs (n,m) when the inverse implication is also true for each of the above spaces, i.e. the PPT condition is sufficient for separability. We also show that a matrix in Q(n)⊗S(2) is Q+(n)⊗S+(2)- separable if and only if it is positive semidefinite.  相似文献   

6.
Let Mn be the semigroup of n×n complex matrices under the usual multiplication, and let S be different subgroups or semigroups in Mn including the (special) unitary group, (special) general linear group, the semigroups of matrices with bounded ranks. Suppose Λk(A) is the rank-k numerical range and rk(A) is the rank-k numerical radius of AMn. Multiplicative maps ?:SMn satisfying rk(?(A))=rk(A) are characterized. From these results, one can deduce the structure of multiplicative preservers of Λk(A).  相似文献   

7.
Given an arbitrary field K, we reduce the determination of the singular endomorphisms f of Mn(K) such that f(GLn(K))⊂GLn(K) to the classification of n-dimensional division algebras over K. Our method, which is based upon Dieudonné’s theorem on singular subspaces of Mn(K), also yields a proof for the classical non-singular case.  相似文献   

8.
Using a recent result of Bogdanov and Guterman on the linear preservers of pairs of simultaneously diagonalizable matrices, we determine all the automorphisms of the vector space Mn(R) which stabilize the set of diagonalizable matrices. To do so, we investigate the structure of linear subspaces of diagonalizable matrices of Mn(R) with maximal dimension.  相似文献   

9.
For a graph G of order n, the minimum rank of G is defined to be the smallest possible rank over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We prove an upper bound for minimum rank in terms of minimum degree of a vertex is valid for many graphs, including all bipartite graphs, and conjecture this bound is true over for all graphs, and prove a related bound for all zero-nonzero patterns of (not necessarily symmetric) matrices. Most of the results are valid for matrices over any infinite field, but need not be true for matrices over finite fields.  相似文献   

10.
Let F be a field and let m and n be integers with m,n?3. Let Mn denote the algebra of n×n matrices over F. In this note, we characterize mappings ψ:MnMm that satisfy one of the following conditions:
1.
|F|=2 or |F|>n+1, and ψ(adj(A+αB))=adj(ψ(A)+αψ(B)) for all A,BMn and αF with ψ(In)≠0.
2.
ψ is surjective and ψ(adj(A-B))=adj(ψ(A)-ψ(B)) for every A,BMn.
Here, adjA denotes the classical adjoint of the matrix A, and In is the identity matrix of order n. We give examples showing the indispensability of the assumption ψ(In)≠0 in our results.  相似文献   

11.
We show that every injective Jordan semi-triple map on the algebra Mn(F) of all n × n matrices with entries in a field F (i.e. a map Φ:Mn(F)→Mn(F) satisfying
Φ(ABA)=Φ(A)Φ(B)Φ(A)  相似文献   

12.
Let Mn(R) be the algebra of all n×n matrices over a unital commutative ring R with 2 invertible, V be an R-module. It is shown in this article that, if a symmetric bilinear map {·,·} from Mn(RMn(R) to V satisfies the condition that {u,u}={e,u} whenever u2=u, then there exists a linear map f from Mn(R) to V such that . Applying the main result we prove that an invertible linear transformation θ on Mn(R) preserves idempotent matrices if and only if it is a Jordan automorphism, and a linear transformation δ on Mn(R) is a Jordan derivation if and only if it is Jordan derivable at all idempotent points.  相似文献   

13.
Let F be a field with ∣F∣ > 2 and Tn(F) be the set of all n × n upper triangular matrices, where n ? 2. Let k ? 2 be a given integer. A k-tuple of matrices A1, …, Ak ∈ Tn(F) is called rank reverse permutable if rank(A1 A2 ? Ak) = rank(Ak Ak−1 ? A1). We characterize the linear maps on Tn(F) that strongly preserve the set of rank reverse permutable matrix k-tuples.  相似文献   

14.
Let Mn be the algebra of all n×n matrix over a field F, A a rank one matrix in Mn. In this article it is shown that if a bilinear map ? from Mn×Mn to Mn satisfies the condition that ?(u,v)=?(I,A) whenever u·v=A, then there exists a linear map φ from Mn to Mn such that . If ? is further assumed to be symmetric then there exists a matrix B such that ?(x,y)=tr(xy)B for all x,yMn. Applying the main result we prove that if a linear map on Mn is desirable at a rank one matrix then it is a derivation, and if an invertible linear map on Mn is automorphisable at a rank one matrix then it is an automorphism. In other words, each rank one matrix in Mn is an all-desirable point and an all-automorphisable point, respectively.  相似文献   

15.
Let D be an arbitrary division ring and Mn(D) the multiplicative semigroup of all n×n matrices over D. We study non-degenerate, injective homomorphisms from M2(D) to M4(D). In particular, we present a structural result for the case when D is the ring of quaternions.  相似文献   

16.
Given an m×n matrix M over E=GF(qt) and an ordered basis A={z1,…,zt} for field E over K=GF(q), expand each entry of M into a t×1 vector of coordinates of this entry relative to A to obtain an mt×n matrix M1 with entries from the field K. Let r=rank(M) and r1=rank(M1). We show that r?r1?min{rt,n}, and we determine the number b(m,n,r,r1,q,t) of m×n matrices M of rank r over GF(qt) with associated mt×n matrix M1 of rank r1 over GF (q).  相似文献   

17.
Denote by Rn,m the ring of invariants of m-tuples of n×n matrices (m,n?2) over an infinite base field K under the simultaneous conjugation action of the general linear group. When char(K)=0, Razmyslov (Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974) 723) and Procesi (Adv. Math. 19 (1976) 306) established a connection between the Nagata-Higman theorem and the degree bound for generators of Rn,m. We extend this relationship to the case when the base field has positive characteristic. In particular, we show that if 0<char(K))?n, then Rn,m is not generated by its elements whose degree is smaller than m. A minimal system of generators of R2,m is determined for the case char(K)=2: it consists of 2m+m−1 elements, and the maximum of their degrees is m. We deduce a consequence indicating that the theory of vector invariants of the special orthogonal group in characteristic 2 is not analogous to the case char(K)≠2. We prove that the characterization of the Rn,m that are complete intersections, known before when char(K)=0, is valid for any infinite K. We give a Cohen-Macaulay presentation of R2,4, and analyze the difference between the cases char(K)=2 and char(K)≠2.  相似文献   

18.
Let Tn (F) be the algebra of all n×n upper triangular matrices over an arbitrary field F. We first characterize those rank-one nonincreasing mappings ψ: Tn (F)→Tm (F)n?m such that ψ(In ) is of rank n. We next deduce from this result certain types of singular rank-one r-potent preservers and nonzero r-potent preservers on Tn (F). Characterizations of certain classes of homomorphisms and semi-homomorphisms on Tn (F) are also given.  相似文献   

19.
Let A be a symmetric matrix of size n×n with entries in some (commutative) field K. We study the possibility of decomposing A into two blocks by conjugation by an orthogonal matrix T∈Matn(K). We say that A is absolutely indecomposable if it is indecomposable over every extension of the base field. If K is formally real then every symmetric matrix A diagonalizes orthogonally over the real closure of K. Assume that K is a not formally real and of level s. We prove that in Matn(K) there exist symmetric, absolutely indecomposable matrices iff n is congruent to 0, 1 or −1 modulo 2s.  相似文献   

20.
A matrix M is nilpotent of index 2 if M2=0. Let V be a space of nilpotent n×n matrices of index 2 over a field k where and suppose that r is the maximum rank of any matrix in V. The object of this paper is to give an elementary proof of the fact that . We show that the inequality is sharp and construct all such subspaces of maximum dimension. We use the result to find the maximum dimension of spaces of anti-commuting matrices and zero subalgebras of special Jordan Algebras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号