首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let Mm,n(B) be the semimodule of all m×n Boolean matrices where B is the Boolean algebra with two elements. Let k be a positive integer such that 2?k?min(m,n). Let B(m,n,k) denote the subsemimodule of Mm,n(B) spanned by the set of all rank k matrices. We show that if T is a bijective linear mapping on B(m,n,k), then there exist permutation matrices P and Q such that T(A)=PAQ for all AB(m,n,k) or m=n and T(A)=PAtQ for all AB(m,n,k). This result follows from a more general theorem we prove concerning the structure of linear mappings on B(m,n,k) that preserve both the weight of each matrix and rank one matrices of weight k2. Here the weight of a Boolean matrix is the number of its nonzero entries.  相似文献   

2.
We extend Liu’s fundamental theorem of the geometry of alternate matrices to the second exterior power of an infinite dimensional vector space and also use her theorem to characterize surjective mappings T from the vector space V of all n×n alternate matrices over a field with at least three elements onto itself such that for any pair A, B in V, rank(A-B)?2k if and only if rank(T(A)-T(B))?2k, where k is a fixed positive integer such that n?2k+2 and k?2.  相似文献   

3.
Let m(G,k) be the number of k-matchings in the graph G. We write G1G2 if m(G1, k) ≤ m(G2, k) for all k = 1, 2,…. A tree is said to be starlike if it possesses exactly one vertex of degree greater than two. The relation T1T2 is shown to hold for various pairs of starlike trees T1, T2. The starlike trees (with a given number of vertices), extremal with respect to the relation ⪯, are characterized.  相似文献   

4.
Let V be a vector space over a field F. Assume that the characteristic of F is large, i.e. char(F)>dimV. Let T:VV be an invertible linear map. We answer the following question in this paper. When doesVadmit a T-invariant non-degenerate symmetric (resp. skew-symmetric) bilinear form? We also answer the infinitesimal version of this question.Following Feit and Zuckerman 2, an element g in a group G is called real if it is conjugate in G to its own inverse. So it is important to characterize real elements in GL(V,F). As a consequence of the answers to the above question, we offer a characterization of the real elements in GL(V,F).Suppose V is equipped with a non-degenerate symmetric (resp. skew-symmetric) bilinear form B. Let S be an element in the isometry group I(V,B). A non-degenerate S-invariant subspace W of (V,B) is called orthogonally indecomposable with respect to S if it is not an orthogonal sum of proper S-invariant subspaces. We classify the orthogonally indecomposable subspaces. This problem is non-trivial for the unipotent elements in I(V,B). The level of a unipotent T is the least integer k such that (T-I)k=0. We also classify the levels of unipotents in I(V,B).  相似文献   

5.
We give sufficient conditions for a graph to have degree bounded trees. Let G be a connected graph and A a vertex subset of G. We denote by σk(A) the minimum value of the degree sum in G of any k independent vertices in A and by w(GA) the number of components in the induced subgraph GA. Our main results are the following: (i) If σk(A)≥|V(G)|−1, then G contains a tree T with maximum degree at most k and AV(T). (ii) If σkw(GA)(A)≥|A|−1, then G contains a spanning tree T such that dT(x)≤k for every xA. These are generalizations of the result by Win [S. Win, Existenz von Gerüsten mit Vorgeschriebenem Maximalgrad in Graphen, Abh. Math. Sem. Univ. Hamburg 43 (1975) 263-267] and the degree conditions are sharp.  相似文献   

6.
Let V be an n-dimensional vector space and T?Hom(V,V). The first result shows that if Cm(T), the mth compound of T, possesses a basis of eigenvectors, then it possesses a basis consisting of decomposable eigenvectors in the mth Grassman space over V. The paper also contains a simplified proof of a recent result of S. Belcerzyk on traces of compounds as well as conditions for the equality of fixed coefficients in the polynomials det(λA+μX) and det(λB+μX).  相似文献   

7.
Let D be a division ring with an involution J such that D is finite-dimensional over its center Z and char D≠2. Let T:Mm(D)→Mn(D) be a Z-linear map between matrix rings over D. We show that T satisfies [T(X)]1=T(X1) if and only if T(X)=∑±A1kXAk. Similarly, T satisfies [T(X)]1 = ? T(X1) if and only if T(X = ∑(A1kXBk ? B1kXAk). The first of these results generalizes and extends a theorem of R.D. Hill [2] on Hermitian-preserving transformations.  相似文献   

8.
Denote by G=(V,) a graph which V is the vertex set and is an adjacency relation on a subset of V×V. In this paper, the good distance graph is defined. Let (V,) and (V,) be two good distance graphs, and φ:VV be a map. The following theorem is proved: φ is a graph isomorphism ⇔φ is a bounded distance preserving surjective map in both directions ⇔φ is a distance k preserving surjective map in both directions (where k<diam(G)/2 is a positive integer), etc. Let D be a division ring with an involution such that both |FZD|?3 and D is not a field of characteristic 2 with D=F, where and ZD is the center of D. Let Hn(n?2) be the set of n×n Hermitian matrices over D. It is proved that (Hn,) is a good distance graph, where AB⇔rank(A-B)=1 for all A,BHn.  相似文献   

9.
For a positive integer k, a k-packing in a graph G is a subset A of vertices such that the distance between any two distinct vertices from A is more than k. The packing chromatic number of G is the smallest integer m such that the vertex set of G can be partitioned as V1,V2,…,Vm where Vi is an i-packing for each i. It is proved that the planar triangular lattice T and the three-dimensional integer lattice Z3 do not have finite packing chromatic numbers.  相似文献   

10.
Let G be a (k+m)-connected graph and F be a linear forest in G such that |E(F)|=m and F has at most k-2 components of order 1, where k?2 and m?0. In this paper, we prove that if every independent set S of G with |S|=k+1 contains two vertices whose degree sum is at least d, then G has a cycle C of length at least min{d-m,|V(G)|} which contains all the vertices and edges of F.  相似文献   

11.
The reformulation of the Bessis-Moussa-Villani (BMV) conjecture given by Lieb and Seiringer asserts that the coefficient αm,k(A,B) of tk in the polynomial Tr(A+tB)m, with A,B positive semidefinite matrices, is nonnegative for all m,k. We propose a natural extension of a method of attack on this problem due to Hägele, and investigate for what values of m,k the method is successful, obtaining a complete determination when either m or k is odd.  相似文献   

12.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

13.
J. Cutler 《Discrete Mathematics》2009,309(9):2749-2754
We prove a conjecture of Horak that can be thought of as an extension of classical results including Dirac’s theorem on the existence of Hamiltonian cycles. Namely, we prove for 1≤kn−2 if G is a connected graph with AV(G) such that dG(v)≥k for all vA, then there exists a subtree T of G such that V(T)⊃A and for all vA.  相似文献   

14.
Let Mm, n(F) denote the set of all m×n matrices over the algebraically closed field F. Let T denote a linear transformation, T:Mm, n(F)→Mm, n(F). Theorem: If max(m, n)?2k?2, k?1, and T preserves rank k matrices [i.e.?(A)=k implies ?(T(A))=k], then there exist nonsingular m×m and n×n matrices U and V respectively such that either (i) T:AUAV for all A?Mm, n(F), or (ii) m=n and T:AUAtV for all A?Mn(F), where At denotes the transpose of A.  相似文献   

15.
16.
Let G be a finite group. The prime graph of G is denoted by Γ(G). It is proved in [1] that if G is a finite group such that Γ(G) = Γ(B p (3)), where p > 3 is an odd prime, then G ? B p (3) or C p (3). In this paper we prove the main result that if G is a finite group such that Γ(G) = Γ(B n (3)), where n ≥ 6, then G has a unique nonabelian composition factor isomorphic to B n (3) or C n (3). Also if Γ(G) = Γ(B 4(3)), then G has a unique nonabelian composition factor isomorphic to B 4(3), C 4(3), or 2 D 4(3). It is proved in [2] that if p is an odd prime, then B p (3) is recognizable by element orders. We give a corollary of our result, generalize the result of [2], and prove that B 2k+1(3) is recognizable by the set of element orders. Also the quasirecognition of B 2k (3) by the set of element orders is obtained.  相似文献   

17.
Let F be a field with ∣F∣ > 2 and Tn(F) be the set of all n × n upper triangular matrices, where n ? 2. Let k ? 2 be a given integer. A k-tuple of matrices A1, …, Ak ∈ Tn(F) is called rank reverse permutable if rank(A1 A2 ? Ak) = rank(Ak Ak−1 ? A1). We characterize the linear maps on Tn(F) that strongly preserve the set of rank reverse permutable matrix k-tuples.  相似文献   

18.
Let G be a graph with vertex set V(G) and edge set E(G). Let k1, k2,…,km be positive integers. It is proved in this study that every [0,k1+…+km?m+1]‐graph G has a [0, ki]1m‐factorization orthogonal to any given subgraph H with m edges. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 267–276, 2002  相似文献   

19.
Let G=(V,E) be an undirected graph with a node set V and an arc set E. G has k pairwise disjoint subsets T1,T2,…,Tk of nodes, called resource sets, where |Ti| is even for each i. The partition problem with k resource sets asks to find a partition V1 and V2 of the node set V such that the graphs induced by V1 and V2 are both connected and |V1Ti|=|V2Ti|=|Ti|/2 holds for each i=1,2,…,k. The problem of testing whether such a bisection exists is known to be NP-hard even in the case of k=1. On the other hand, it is known that if G is (k+1)-connected for k=1,2, then a bisection exists for any given resource sets, and it has been conjectured that for k?3, a (k+1)-connected graph admits a bisection. In this paper, we show that for k=3, the conjecture does not hold, while if G is 4-connected and has K4 as its subgraph, then a bisection exists and it can be found in O(|V|3log|V|) time. Moreover, we show that for an arc-version of the problem, the (k+1)-edge-connectivity suffices for k=1,2,3.  相似文献   

20.
Loebl, Komlós, and Sós conjectured that if at least half of the vertices of a graph G have degree at least some kN, then every tree with at most k edges is a subgraph of G. Our main result is an approximate version of this conjecture for large enough n=|V(G)|, assumed that n=O(k).Our result implies an asymptotic bound for the Ramsey number of trees. We prove that r(Tk,Tm)?k+m+o(k+m), as k+m→∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号