首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given an arbitrary field K, we reduce the determination of the singular endomorphisms f of Mn(K) such that f(GLn(K))⊂GLn(K) to the classification of n-dimensional division algebras over K. Our method, which is based upon Dieudonné’s theorem on singular subspaces of Mn(K), also yields a proof for the classical non-singular case.  相似文献   

2.
Let Mn(R) be the algebra of all n×n matrices over a unital commutative ring R with 2 invertible, V be an R-module. It is shown in this article that, if a symmetric bilinear map {·,·} from Mn(RMn(R) to V satisfies the condition that {u,u}={e,u} whenever u2=u, then there exists a linear map f from Mn(R) to V such that . Applying the main result we prove that an invertible linear transformation θ on Mn(R) preserves idempotent matrices if and only if it is a Jordan automorphism, and a linear transformation δ on Mn(R) is a Jordan derivation if and only if it is Jordan derivable at all idempotent points.  相似文献   

3.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

4.
Let A be a Banach algebra with unity I and M be a unital Banach A-bimodule. A family of continuous additive mappings D=(δi)iN from A into M is called a higher derivable mapping at X, if δn(AB)=∑i+j=nδi(A)δj(B) for any A,BA with AB=X. In this paper, we show that D is a Jordan higher derivation if D is a higher derivable mapping at an invertible element X. As an application, we also get that every invertible operator in a nontrivial nest algebra is a higher all-derivable point.  相似文献   

5.
A family F of square matrices of the same order is called a quasi-commuting family if (AB-BA)C=C(AB-BA) for all A,B,CF where A,B,C need not be distinct. Let fk(x1,x2,…,xp),(k=1,2,…,r), be polynomials in the indeterminates x1,x2,…,xp with coefficients in the complex field C, and let M1,M2,…,Mr be n×n matrices over C which are not necessarily distinct. Let and let δF(x1,x2,…,xp)=detF(x1,x2,…,xp). In this paper, we prove that, for n×n matrices A1,A2,…,Ap over C, if {A1,A2,…,Ap,M1,M2,…,Mr} is a quasi-commuting family, then F(A1,A2,…,Ap)=O implies that δF(A1,A2,…,Ap)=O.  相似文献   

6.
Using a recent result of Bogdanov and Guterman on the linear preservers of pairs of simultaneously diagonalizable matrices, we determine all the automorphisms of the vector space Mn(R) which stabilize the set of diagonalizable matrices. To do so, we investigate the structure of linear subspaces of diagonalizable matrices of Mn(R) with maximal dimension.  相似文献   

7.
Let be a locally strongly convex hypersurface, given by a strictly convex function xn+1=f(x1,…,xn) defined in a convex domain ΩAn. We consider the Riemannian metric G# on M, defined by . In this paper we prove that if M is a locally strongly convex surface with constant affine mean curvature and if M is complete with respect to the metric G#, then M must be an elliptic paraboloid.  相似文献   

8.
Let W and M be two finite dimensional subspaces of a Hilbert space H such that H=WM, and let PWM denote the oblique projection with range W and nullspace M. In this article we get the following formula for the singular values of PWM
  相似文献   

9.
Let (K) be a field. Given an arbitrary linear subspace V of Mn(K) of codimension less than n-1, a classical result states that V generates the (K)-algebra Mn(K). Here, we strengthen this statement in three ways: we show that Mn(K) is spanned by the products of the form AB with (A,B)∈V2; we prove that every matrix in Mn(K) can be decomposed into a product of matrices of V; finally, when V is a linear perplane of Mn(K) and n>2, we show that every matrix in Mn(K) is a product of two elements of V.  相似文献   

10.
Let Mn be the algebra of all n×n matrix over a field F, A a rank one matrix in Mn. In this article it is shown that if a bilinear map ? from Mn×Mn to Mn satisfies the condition that ?(u,v)=?(I,A) whenever u·v=A, then there exists a linear map φ from Mn to Mn such that . If ? is further assumed to be symmetric then there exists a matrix B such that ?(x,y)=tr(xy)B for all x,yMn. Applying the main result we prove that if a linear map on Mn is desirable at a rank one matrix then it is a derivation, and if an invertible linear map on Mn is automorphisable at a rank one matrix then it is an automorphism. In other words, each rank one matrix in Mn is an all-desirable point and an all-automorphisable point, respectively.  相似文献   

11.
Let Mm,n(B) be the semimodule of all m×n Boolean matrices where B is the Boolean algebra with two elements. Let k be a positive integer such that 2?k?min(m,n). Let B(m,n,k) denote the subsemimodule of Mm,n(B) spanned by the set of all rank k matrices. We show that if T is a bijective linear mapping on B(m,n,k), then there exist permutation matrices P and Q such that T(A)=PAQ for all AB(m,n,k) or m=n and T(A)=PAtQ for all AB(m,n,k). This result follows from a more general theorem we prove concerning the structure of linear mappings on B(m,n,k) that preserve both the weight of each matrix and rank one matrices of weight k2. Here the weight of a Boolean matrix is the number of its nonzero entries.  相似文献   

12.
13.
Let F be a field and let m and n be integers with m,n?3. Let Mn denote the algebra of n×n matrices over F. In this note, we characterize mappings ψ:MnMm that satisfy one of the following conditions:
1.
|F|=2 or |F|>n+1, and ψ(adj(A+αB))=adj(ψ(A)+αψ(B)) for all A,BMn and αF with ψ(In)≠0.
2.
ψ is surjective and ψ(adj(A-B))=adj(ψ(A)-ψ(B)) for every A,BMn.
Here, adjA denotes the classical adjoint of the matrix A, and In is the identity matrix of order n. We give examples showing the indispensability of the assumption ψ(In)≠0 in our results.  相似文献   

14.
The purpose of this paper is to revisit two problems discussed previously in the literature, both related to the commutativity property P1P2 = P2P1, where P1 and P2 denote projectors (i.e., idempotent matrices). The first problem was considered by Baksalary et al. [J.K. Baksalary, O.M. Baksalary, T. Szulc, A property of orthogonal projectors, Linear Algebra Appl. 354 (2002) 35-39], who have shown that if P1 and P2 are orthogonal projectors (i.e., Hermitian idempotent matrices), then in all nontrivial cases a product of any length having P1 and P2 as its factors occurring alternately is equal to another such product if and only if P1 and P2 commute. In the present paper a generalization of this result is proposed and validity of the equivalence between commutativity property and any equality involving two linear combinations of two any length products having orthogonal projectors P1 and P2 as their factors occurring alternately is investigated. The second problem discussed in this paper concerns specific generalized inverses of the sum P1 + P2 and the difference P1 − P2 of (not necessary orthogonal) commuting projectors P1 and P2. The results obtained supplement those provided in Section 4 of Baksalary and Baksalary [J.K. Baksalary, O.M. Baksalary, Commutativity of projectors, Linear Algebra Appl. 341 (2002) 129-142].  相似文献   

15.
The nullity and rank of linear combinations of idempotent matrices   总被引:2,自引:0,他引:2  
Baksalary and Baksalary [J.K. Baksalary, O.M. Baksalary, Nonsingularity of linear combinations of idempotent matrices, Linear Algebra Appl. 388 (2004) 25-29] proved that the nonsingularity of P1 + P2, where P1 and P2 are idempotent matrices, is equivalent to the nonsingularity of any linear combinations c1P1 + c2P2, where c1c2 ≠ 0 and c1 + c2 ≠ 0. In the present note this result is strengthened by showing that the nullity and rank of c1P1 + c2P2 are constant. Furthermore, a simple proof of the rank formula of Groß and Trenkler [J. Groß, G. Trenkler, Nonsingularity of the difference of two oblique projectors, SIAM J. Matrix Anal. Appl. 21 (1999) 390-395] is obtained.  相似文献   

16.
Let V be a linear subspace of Mn,p(K) with codimension lesser than n, where K is an arbitrary field and n?p. In a recent work of the author, it was proven that V is always spanned by its rank p matrices unless n=p=2 and K?F2. Here, we give a sufficient condition on codim V for V to be spanned by its rank r matrices for a given r∈?1,p-1?. This involves a generalization of the Gerstenhaber theorem on linear subspaces of nilpotent matrices.  相似文献   

17.
The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all non-central elements of R and two distinct vertices x and y are adjacent if and only if xy = yx. Let D be a division ring and n ? 3. In this paper we investigate the diameters of Γ(Mn(D)) and determine the diameters of some induced subgraphs of Γ(Mn(D)), such as the induced subgraphs on the set of all non-scalar non-invertible, nilpotent, idempotent, and involution matrices in Mn(D). For every field F, it is shown that if Γ(Mn(F)) is a connected graph, then diam Γ(Mn(F)) ? 6. We conjecture that if Γ(Mn(F)) is a connected graph, then diam Γ(Mn(F)) ? 5. We show that if F is an algebraically closed field or n is a prime number and Γ(Mn(F)) is a connected graph, then diam Γ(Mn(F)) = 4. Finally, we present some applications to the structure of pairs of idempotents which may prove of independent interest.  相似文献   

18.
Let m and k be two fixed positive integers such that m>k?2. Let V be a left vector space over a division ring with dimension at least m+k+1. Let Gm(V) be the Grassmannian consisting of all m-dimensional subspaces of V. We characterize surjective mappings T from Gm(V) onto itself such that for any A,B in Gm(V), the distance between A and B is not greater than k if and only if the distance between T(A) and T(B) is not greater than k.  相似文献   

19.
We considered N×N Wishart ensembles in the class WC(ΣN,M) (complex Wishart matrices with M degrees of freedom and covariance matrix ΣN) such that N0 eigenvalues of ΣN are 1 and N1=NN0 of them are a. We studied the limit as M, N, N0 and N1 all go to infinity such that , and 0<c,β<1. In this case, the limiting eigenvalue density can either be supported on 1 or 2 disjoint intervals in R+, and a phase transition occurs when the support changes from 1 interval to 2 intervals. By using the Riemann-Hilbert analysis, we have shown that when the phase transition occurs, the eigenvalue distribution is described by the Pearcey kernel near the critical point where the support splits.  相似文献   

20.
In this work it is shown that certain interesting types of orthogonal system of subalgebras (whose existence cannot be ruled out by the trivial necessary conditions) cannot exist. In particular, it is proved that there is no orthogonal decomposition of Mn(C)⊗Mn(C)Mn2(C) into a number of maximal abelian subalgebras and factors isomorphic to Mn(C) in which the number of factors would be 1 or 3.In addition, some new tools are introduced, too: for example, a quantity c(A,B), which measures “how close” the subalgebras A,BMn(C) are to being orthogonal. It is shown that in the main cases of interest, c(A,B) - where A and B are the commutants of A and B, respectively - can be determined by c(A,B) and the dimensions of A and B. The corresponding formula is used to find some further obstructions regarding orthogonal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号