首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The minimum (symmetric) rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. The problem of determining minimum (symmetric) rank has been studied extensively. We define the minimum skew rank of a simple graph G to be the smallest possible rank among all skew-symmetric matrices over F whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We apply techniques from the minimum (symmetric) rank problem and from skew-symmetric matrices to obtain results about the minimum skew rank problem.  相似文献   

2.
For a graph G of order n, the minimum rank of G is defined to be the smallest possible rank over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We prove an upper bound for minimum rank in terms of minimum degree of a vertex is valid for many graphs, including all bipartite graphs, and conjecture this bound is true over for all graphs, and prove a related bound for all zero-nonzero patterns of (not necessarily symmetric) matrices. Most of the results are valid for matrices over any infinite field, but need not be true for matrices over finite fields.  相似文献   

3.
For a graph G of order n, the maximum nullity of G is defined to be the largest possible nullity over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Maximum nullity and the related parameter minimum rank of the same set of matrices have been studied extensively. A new parameter, maximum generic nullity, is introduced. Maximum generic nullity provides insight into the structure of the null-space of a matrix realizing maximum nullity of a graph. It is shown that maximum generic nullity is bounded above by edge connectivity and below by vertex connectivity. Results on random graphs are used to show that as n goes to infinity almost all graphs have equal maximum generic nullity, vertex connectivity, edge connectivity, and minimum degree.  相似文献   

4.
Zero forcing sets and the minimum rank of graphs   总被引:2,自引:0,他引:2  
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. This paper introduces a new graph parameter, Z(G), that is the minimum size of a zero forcing set of vertices and uses it to bound the minimum rank for numerous families of graphs, often enabling computation of the minimum rank.  相似文献   

5.
For a graph G on n vertices and a field F, the minimum rank of G over F, written as mrF(G), is the smallest possible rank over all n×n symmetric matrices over F whose (i,j)th entry (for ) is nonzero whenever ij is an edge in G and is zero otherwise. The maximum nullity of G over F is MF(G)=n-mrF(G). The minimum rank problem of a graph G is to determine mrF(G) (or equivalently, MF(G)). This problem has received considerable attention over the years. In [F. Barioli, W. Barrett, S. Butler, S.M. Cioab?, D. Cvetkovi?, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanovi?, H. van der Holst, K.V. Meulen, A.W. Wehe, AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628-1648], a new graph parameter Z(G), the zero forcing number, was introduced to bound MF(G) from above. The authors posted an attractive question: What is the class of graphs G for which Z(G)=MF(G) for some field F? This paper focuses on exploring the above question.  相似文献   

6.
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Minimum rank is a difficult parameter to compute. However, there are now a number of known reduction techniques and bounds that can be programmed on a computer; we have developed a program using the open-source mathematics software Sage to implement several techniques. We have also established several additional strategies for computation of minimum rank. These techniques have been used to determine the minimum ranks of all graphs of order 7.  相似文献   

7.
Through a succession of results, it is known that if the graph of an Hermitian matrix A is a tree and if for some index j, λσ(A)∩σ(A(j)), then there is an index i such that the multiplicity of λ in σ(A(i)) is one more than that in A. We exhibit a converse to this result by showing that it is generally true only for trees. In particular, it is shown that the minimum rank of a positive semidefinite matrix with a given graph G is ?n-2 when G is not a tree. This raises the question of how the minimum rank of a positive semidefinite matrix depends upon the graph in general.  相似文献   

8.
The minimum skew rank of a simple graph G   is the smallest possible rank among all real skew-symmetric matrices whose (i,j)(i,j)-entry is nonzero if and only if the edge joining i and j is in G. It is known that a graph has minimum skew rank 2 if and only if it consists of a complete multipartite graph and some isolated vertices. Some necessary conditions for a graph to have minimum skew rank 4 are established, and several families of graphs with minimum skew rank 4 are given. Linear algebraic techniques are developed to show that complements of trees and certain outerplanar graphs have minimum skew rank 4.  相似文献   

9.
For a simple graph G?=?(𝒱, ?) with vertex-set 𝒱?=?{1,?…?,?n}, let 𝒮(G) be the set of all real symmetric n-by-n matrices whose graph is G. We present terminology linking established as well as new results related to the minimum rank problem, with spectral properties in graph theory. The minimum rank mr(G) of G is the smallest possible rank over all matrices in 𝒮(G). The rank spread r v (G) of G at a vertex v, defined as mr(G)???mr(G???v), can take values ??∈?{0,?1,?2}. In general, distinct vertices in a graph may assume any of the three values. For ??=?0 or 1, there exist graphs with uniform r v (G) (equal to the same integer at each vertex v). We show that only for ??=?0, will a single matrix A in 𝒮(G) determine when a graph has uniform rank spread. Moreover, a graph G, with vertices of rank spread zero or one only, is a λ-core graph for a λ-optimal matrix A in 𝒮(G). We also develop sufficient conditions for a vertex of rank spread zero or two and a necessary condition for a vertex of rank spread two.  相似文献   

10.
Let A,B be n×n matrices with entries in an algebraically closed field F of characteristic zero, and let C=AB?BA. It is shown that if C has rank two and AiBjCk is nilpotent for 0?i, j?n?1, 1?k?2, then A, B are simultaneously triangularizable over F. An example is given to show that this result is in some sense best possible.  相似文献   

11.
For a graph G=(V,E) with vertex-set V={1,2,…,n}, which is allowed to have parallel edges, and for a field F, let S(G;F) be the set of all F-valued symmetric n×n matrices A which represent G. The maximum corank of a graph G is the maximum possible corank over all AS(G;F). If (G1,G2) is a (?2)-separation, we give a formula which relates the maximum corank of G to the maximum corank of some small variations of G1 and G2.  相似文献   

12.
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise; maximum nullity is taken over the same set of matrices. The zero forcing number is the minimum size of a zero forcing set of vertices and bounds the maximum nullity from above. The spread of a graph parameter at a vertex v or edge e of G is the difference between the value of the parameter on G and on G-v or G-e. Rank spread (at a vertex) was introduced in [4]. This paper introduces vertex spread of the zero forcing number and edge spreads for minimum rank/maximum nullity and zero forcing number. Properties of the spreads are established and used to determine values of the minimum rank/maximum nullity and zero forcing number for various types of grids with a vertex or edge deleted.  相似文献   

13.
Attila Sali 《Combinatorica》1992,12(3):351-361
LetL(A) be the set of submatrices of anm×n matrixA. ThenL(A) is a ranked poset with respect to the inclusion, and the poset rank of a submatrix is the sum of the number of rows and columns minus 1, the rank of the empty matrix is zero. We attack the question: What is the maximum number of submatrices such that any two of them have intersection of rank at leastt? We have a solution fort=1,2 using the followoing theorem of independent interest. Letm(n,i,j,k) = max(|F|;|G|), where maximum is taken for all possible pairs of families of subsets of ann-element set such thatF isi-intersecting,G isj-intersecting andF ansd,G are cross-k-intersecting. Then fori≤j≤k, m(n,i,j,k) is attained ifF is a maximali-intersecting family containing subsets of size at leastn/2, andG is a maximal2k?i-intersecting family. Furthermore, we discuss and Erd?s-Ko-Rado-type question forL(A), as well.  相似文献   

14.
Let Mm,n(F) denote the space of all mXn matrices over the algebraically closed field F. A subspace of Mm,n(F), all of whose nonzero elements have rank k, is said to be essentially decomposable if there exist nonsingular mXn matrices U and V respectively such that for any element A, UAV has the form
UAV=A1A2A30
where A1 is iX(k–i) for some i?k. Theorem: If K is a space of rank k matrices, then either K is essentially decomposable or dim K?k+1. An example shows that the above bound on non-essentially-decomposable spaces of rank k matrices is sharp whenever n?2k–1.  相似文献   

15.
For a given m × n matrix A of rank r over a finite field F, the number of generalized inverses, of reflexive generalized inverses, of normalized generalized inverses, and of pseudoinverses of A are determined by elementary methods. The more difficult problem of determining which m × n matrices A of rank r over F have normalized generalized inverses and which have pseudoinverses is solved. Moreover, the number of such matrices which possess normalized generalized inverses and the number which possess pseudoinverses are found.  相似文献   

16.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, some graft transformations that decrease or increase ?(G) are given. With them, for the graphs with both order n and k pendant vertices, the extremal graphs with the minimum distance spectral radius are completely characterized; the extremal graph with the maximum distance spectral radius is shown to be a dumbbell graph (obtained by attaching some pendant edges to each pendant vertex of a path respectively) when 2≤kn−2; for k=1,2,3,n−1, the extremal graphs with the maximum distance spectral radius are completely characterized.  相似文献   

17.
A Steinhaus matrix is a binary square matrix of size n which is symmetric, with a diagonal of zeros, and whose upper-triangular coefficients satisfy ai,j=ai−1,j−1+ai−1,j for all 2?i<j?n. Steinhaus matrices are determined by their first row. A Steinhaus graph is a simple graph whose adjacency matrix is a Steinhaus matrix. We give a short new proof of a theorem, due to Dymacek, which states that even Steinhaus graphs, i.e. those with all vertex degrees even, have doubly-symmetric Steinhaus matrices. In 1979 Dymacek conjectured that the complete graph on two vertices K2 is the only regular Steinhaus graph of odd degree. Using Dymacek’s theorem, we prove that if (ai,j)1?i,j?n is a Steinhaus matrix associated with a regular Steinhaus graph of odd degree then its sub-matrix (ai,j)2?i,j?n−1 is a multi-symmetric matrix, that is a doubly-symmetric matrix where each row of its upper-triangular part is a symmetric sequence. We prove that the multi-symmetric Steinhaus matrices of size n whose Steinhaus graphs are regular modulo 4, i.e. where all vertex degrees are equal modulo 4, only depend on parameters for all even numbers n, and on parameters in the odd case. This result permits us to verify Dymacek’s conjecture up to 1500 vertices in the odd case.  相似文献   

18.
Let F be a field. If A is an n×n matrix over F, we denote by i(A) the number of invariant polynomials of A different from 1. We shall prove that if A,B are n×n matrices over F and t ∈ {1,…,n}, then i(A)+i(B)⩽n+t if and only if there exists a nonsingular matrix X over F such that i(XAX−1+B)⩽t, except in a few cases.  相似文献   

19.
If G is a graph with p vertices and at least one edge, we set φ (G) = m n max |f(u) ? f(v)|, where the maximum is taken over all edges uv and the minimum over all one-to-one mappings f : V(G) → {1, 2, …, p}: V(G) denotes the set of vertices of G.Pn will denote a path of length n whose vertices are integers 1, 2, …, n with i adjacent to j if and only if |i ? j| = 1. Pm × Pn will denote a graph whose vertices are elements of {1, 2, …, m} × {1, 2, …, n} and in which (i, j), (r, s) are adjacent whenever either i = r and |j ? s| = 1 or j = s and |i ? r| = 1.Theorem.If max(m, n) ? 2, thenφ(Pm × Pn) = min(m, n).  相似文献   

20.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号