首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A phenomenological kinetic model is proposed for describing the production of a thin film containing two components, A and B, by chemical and physical vapor deposition. The film was created by the “site-to-site” deposition of components A and B. The equations for the densities of components A and B in the surface layers were formed, and analytical and numerical solutions were obtained. The model includes the probabilities of different elementary processes for the interaction of gas phase components (molecules, radicals, atoms and ions) with those of A and B on the film surface. The deposition and erosion rates, the surface and volume densities of components A and B and the relative volume of micro-cavities inside the film were calculated as a function of the probabilities for the elementary processes of gas (plasma)-surface interactions. The experimental characteristics of a-Si: H thin films prepared by SiH4 plasma deposition and those of carbon nitride thin films deposited from r.f. — magnetron sputtering and ion beam-assisted processes are compared with model calculations.  相似文献   

2.
In this paper we report molecular dynamics based atomistic simulations of deposition process of Al atoms onto Cu substrate and following nanoindentation process on that nanostructured material. Effects of incident energy on the morphology of deposited thin film and mechanical property of this nanostructured material are emphasized. The results reveal that the morphology of growing film is layer-by-layer-like at incident energy of 0.1-10 eV. The epitaxy mode of film growth is observed at incident energy below 1 eV, but film-mixing mode commences when incident energy increase to 10 eV accompanying with increased disorder of film structure, which improves quality of deposited thin film. Following indentation studies indicate deposited thin films pose lower stiffness than single crystal Al due to considerable amount of defects existed in them, but Cu substrate is strengthened by the interface generated from lattice mismatch between deposited Al thin film and Cu substrate.  相似文献   

3.
利用Monte Carlo (MC)模拟技术研究了非均一的吸附原子与基底相互作用能在一定的生长条件下对超薄膜生长过程的影响.非均一相互作用能是由基底表面原子在垂直和水平方向上实际位置与理想晶格原子位置的偏差所造成.本文用高斯分布来表示这种非均一相互作用能.模拟结果表明:非均一相互作用能对超薄膜的生长过程及薄膜的形貌有显著的影响.这种影响同时受到生长条件的限制,在中等温度时相互作用能的非均一性对岛的个数、平均大小的影响最显著;温度的增加在一定程度上可抵御相互作用能的非均一性对薄膜生长的影响. 关键词: 薄膜生长 Monte Carlo 模拟 相互作用能  相似文献   

4.
Si K-edge XAFS was used to characterize a stoichiometric SiC film prepared by pulsed KrF laser deposition. The film was deposited on a p-type Si(1 0 0) wafer at a substrate temperature of 250 °C in high vacuum with a laser fluence of ∼5 J/cm2. The results reveal that the film contains mainly a SiC phase with an amorphous structure in which the Si atoms are bonded to C atoms in its first shell similar to that of crystalline SiC powder but with significant disorder.  相似文献   

5.
The thin film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters’ depositions proceeds to form the thin film at short time as gas fluids through surface of substrate. In order to grow condensed thin film using series of cluster deposition, the effect of initial velocity, substrate temperature and density of clusters on property of deposited thin film, especially appearance of nanoscale pores inside thin film must be investigated. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000 and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. We have clarified that adhesion between clusters and substrate is greatly influenced by initial velocity. As a result, the exfoliation pattern of deposited thin film is dependent on initial velocity and different between them. One borderline dividing whole region into porous region and nonporous region are obtained to show the effect of growth conditions on appearance of nanoscale pores inside thin film. Moreover, we have also shown that the likelihood of porous thin film is dependent on the point of impact of a cluster relative to previously deposited clusters.  相似文献   

6.
类金刚石薄膜在硅基底上的沉积及其热导率   总被引:1,自引:0,他引:1       下载免费PDF全文
艾立强  张相雄  陈民  熊大曦 《物理学报》2016,65(9):96501-096501
采用分子动力学方法模拟了碳在晶体硅基底上的沉积过程, 并分析计算了所沉积的类金刚石薄膜的面向及法向热导率. 对沉积过程的模拟表明, 薄膜密度及sp3杂化类型的碳原子所占比例均随沉积高度的增加而减小, 在碳原子以1 eV能量垂直入射的情况下, 在硅基底上沉积的薄膜密度约为2.8 g/cm3, sp3杂化类型的碳原子所占比例约为22%, 均低于碳在金刚石基底上沉积的情况. 采用Green-Kubo方法, 计算了所沉积类金刚石薄膜的热导率, 其面向热导率可以达到相同尺寸规则金刚石晶体的50%左右, 并且随着薄膜密度与sp3杂化类型碳原子所占比例的升高而升高.  相似文献   

7.
黄晓玉  程新路  徐嘉靖  吴卫东 《物理学报》2012,61(9):96801-096801
利用分子动力学方法模拟了Be原子在Be基底上的沉积过程. 模拟了沉积粒子不同入射动能条件下, 沉积薄膜表面形态的差异. 在一定能量范围内, 增加粒子入射动能可以减小薄膜的表面粗糙度. 但是, 过高的入射动能, 不利于减小薄膜表面粗糙度. 通过沉积薄膜中原子配位数以及单个原子势能沿薄膜厚度的分布, 分析沉积原子入射动能对于薄膜及表面结构的影响. 沉积动能较大时, 薄膜的密度较大; 单个原子势能沿薄膜厚度分布较为连续; 同时薄膜中原子应力沿薄膜厚度分布较为连续. 最后, 分析了沉积粒子能量转化的过程、粒子初始动能对基底表面附近粒子局部动能增加的影响.  相似文献   

8.
The energetic atom deposition of thin Au/Au(100) film has been studied by molecular dynamics simulation using the Au-Au interatomic interaction potential with embedded atom method. By investigating the variation of coverage curves and Bragg diffraction intensities during the film growth, the transition of Stranski-Kranstanov growth mode to Frank-van der Merwe growth mode was observed with the increase of the incident energy of deposition atoms. The role of energetic atoms in the film growth is discussed by analyzing the transport properties of deposited atoms and the evolution of incident energy and substrate temperatures.  相似文献   

9.
In this article, we study the deposition of AlGaN film on AlN template by molecular dynamics (MD) simulations. The effects of growth temperature and film thickness on the dislocation of deposited AlGaN film are simulated and studied. The atomic structure of deposited AlGaN film is also investigated. We find that the dislocations usually occur at the interface between AlN template and AlGaN film and then extend towards the growth direction. The dislocation density decreases with the increase of AlGaN film thickness, which indicates that increasing the thickness of deposited AlGaN film to a certain extent is beneficial to reducing dislocation. In addition, increasing the growth temperature can also effectively reduce the dislocation in deposited AlGaN film. Furthermore, the crystallinity of deposited AlGaN film could be improved by increasing the growth temperature. This is consistent with the dislocation discussion. The mobility of adatoms increases as the growth temperature increases. So it is easier for adatoms to find their ideal lattice points at higher temperature. Thus the dislocation and other defects can be effectively reduced and the crystal quality of deposited AlGaN film could be improved.  相似文献   

10.
A Nd:YAG laser operating at the fundamental wavelength (1064 nm) and at the second harmonic (532 nm), with 9 ns pulse duration, 100–900 mJ pulse energy, and 30 Hz repetition rate mode, was employed to ablate in vacuum (10?6 mbar) biomaterial targets and to deposit thin films on substrate backings. Titanium target was ablated at the fundamental frequency and deposited on near-Si substrates. The ablation yield increases with the laser fluence and at 40 J/cm 2 the ablation yield for titanium is 1.2×1016 atoms/pulse. Thin film of titanium was deposited on silicon substrates placed at different distance and angles with respect to the target and analysed with different surface techniques (optical microscopy, scanning electron spectrosopy (SEM), and surface profile).

Hydroxyapatite (HA) target was ablated to the second harmonic and thin films were deposited on Ti and Si substrates. The ablation yield at a laser fluence of 10 J/cm 2 is about 5×1014 HA molecules/pulse. Thin film of HA, deposited on silicon substrates placed at different distance and angles with respect to the target, was analysed with different surface techniques (optical microscopy, SEM, and Raman spectroscopy).

Metallic films show high uniformity and absence of grains, whereas the bio-ceramic film shows a large grain size distribution. Both films found special application in the field of biomaterial coverage.  相似文献   

11.
The interaction of thin (<1 nm) samarium films deposited on a textured iridium ribbon has been investigated by thermal desorption spectrometry. Samarium atoms deposited at T = 300 K desorb in three phases associated with the formation of a submonolayer samarium coverage on iridium, a compound of samarium with iridium, and a multilayer samarium film. The interaction with oxygen leads to the appearance of a new desorption phase, which is associated with the formation of samarium oxide. Oxidation of samarium is observed during exposure in oxygen already at room temperature. An increase in temperature of the iridium ribbon, at which exposure in oxygen occurs, to T = 1100 K leads to the formation of the compound of samarium with iridium. Further, the film of the compound decomposes in the course of interaction with oxygen, and samarium oxide grows on the Ir surface.  相似文献   

12.
金原子在熔融玻璃表面的凝聚特性   总被引:4,自引:0,他引:4       下载免费PDF全文
研究了沉积在熔融玻璃表面的金原子的扩散、凝聚以及结晶行为.实验结果表明:金原子在胶状的玻璃表面先形成具有特征结构的网状薄膜,其中金原子晶粒直径约为20nm;然后网孔逐渐增大直至薄膜破裂,金原子凝聚成准圆形的团族,其饱和直径约为1.2μm,扩散系数为10-7—10-8cm2/s数量级;通过快速且准无规地扩散,准圆形团簇最终凝聚成直径约为50μm的大型分枝状凝聚体 关键词: 薄膜 凝聚 扩散  相似文献   

13.
An approach for studying the influence of nano-particles on the structural properties of deposited thin films is proposed. It is based on the molecular dynamic modeling of the deposition process in the presence of contaminating nano-particles. The nano-particle is assumed to be immobile and its interaction with film atoms is described by a spherically symmetric potential. The approach is applied to the investigation of properties of silicon dioxide films. Visualization tools are used to investigate the porosity associated with nano-particles. The structure of the film near the nano-particle is studied using the radial distribution function. It is found that fluctuations of film density near the nano-particles are essentially different in the cases of low-energy and high-energy deposition processes.  相似文献   

14.
采用分子动力学模拟方法,研究了Ti原子连续沉积于Al(001)表面上的薄膜生长过程,分析了入射能量为0.1、5 eV和衬底温度为300、700 K时的界面结合及微观结构.模拟结果表明,增加入射能量和衬底温度,使Ti薄膜的表面越光滑;通过径向分布函数和键对分析技术对薄膜微观结构进行分析,发现衬底温度时薄膜微观结构影响较大,温度300 K及以下时,Ti薄膜主要是FCC结构,随着温度升高,FCC结构成分减少,无序结构成分增加,而入射能量则对薄膜微观结构没有明显影响.  相似文献   

15.
Nanostructured titanium dioxide films have been deposited by supersonic cluster beam deposition (CBD). Nanoparticles are produced by a pulsed microplasma cluster source (PMCS) and selected by aerodynamic separation effects. The as-deposited film is a complex mixture where amorphous material coexists, at the nanoscale, with anatase and rutile crystal phases. The nanocrystalline fraction of the film is characterized by crystal size ranging from 100 nm to less than 5 nm. We have characterized the film structure by transmission electron microscopy, Raman spectromicroscopy, X-ray diffraction, and UV-visible spectroscopy showing that correlations exist between cluster size and film properties. In particular if very small clusters are deposited, the film shows a predominant rutile phase whereas larger clusters form films with mainly anatase structure. Our observations suggest that phonon confinement effects are responsible for a significant shift and broadening observed for the Raman peaks. In addition, optical gap tuning is provided by mass selection: large clusters assembling generates a film with 3.22 eV optical gap, while smallest clusters 3.52 eV.  相似文献   

16.
Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.  相似文献   

17.
We investigated the internal temperature dependence of the Pd1−aPta cluster beam deposition in the present study via the molecular dynamics simulations of soft-landing. By analysis of the velocity distribution and diffusion coefficient of the bimetallic cluster, Pd atoms with better mobility improved the diffusibility of Pt atoms. The radial composition distribution showed that a Pt-core/Pd-shell structure of the cluster formed at high internal temperatures through migrations of the Pd atoms from inner to surface shells. In the soft-landing process, the diffusing and epitaxial behaviors of the deposited clusters mainly depended on the internal temperature because the incident energy of the cluster was very small. By depositing clusters at high internal temperatures, we obtained a thin film of good epitaxial growth as the energetic cluster impact. Furthermore, nonepitaxial configurations such as scattered nonepitaxial atoms, misoriented particles, and grain boundaries of (1 1 1) planes were produced in the growth of the cluster-assembled film. As the size of the incident cluster increased, the internal temperature of the cluster needed for better interfacial diffusion and contact epitaxy on the substrate also rose.  相似文献   

18.
本文采用原位X射线光电子能谱、紫外光电子能谱、高分辨率电子能量损失谱和低能电子衍射技术,研究了温度对P与GaAs(100)表面相互作用的影响。结果表明,经退火后,室温下淀积于GaAs表面的非晶P大部分脱附,仅剩下少量无规分布于表面的P集团。集团中部分P与衬底Ga原子成键,另一部分P则以单质形式存在,继续提高温度退火,将使P集团中的P全部与衬底发生反应生成GaAsP薄层。在高温GaAs衬底上淀积P,将得到GaAsP固溶体薄层。这一薄层有望成为GaAs表面理想的钝化膜。 关键词:  相似文献   

19.
The molecular dynamics simulation of interaction between CH+ with various energy and fusion material tungsten is conducted. The simulated results show that in the incident process, the sputtering rates of C and H atoms change suddenly at the different exposure doses when the incident energy is 50, 100 and 150eV respectively, a few of W atoms are sputtered in the interaction process, but the sputtering rate is less than 0.24%. When the exposure dose is about 3.92×1016cm−2, the incident energy is 50eV, a hydrocarbon firm without W atom is formed on the sample surface bombarded by the ions. A mixed film of W, C and H is formed at the other energy. The deposited rates of C and H atom first decrease then increase with the incident energy increament, the minimum deposited rats appear at 250 and 200eV respectively. The density profiles of C, H atoms, C−H, C−C, W−C bonds in the sample after bombardment move towards the inside of sample, and the C sp3 dominated the sample.  相似文献   

20.
Tungsten has been chosen as one of the most promising candidates as the plasma-facing material in future fusion reactors. Although tungsten has numerous advantages compared with other materials, issues including dust are rather difficult to deal with. Dust is produced in fusion devices by energetic plasma-surface interaction. The re-deposition of dust particles could cause the retention of fuel atoms. In this work, tungsten is deposited with deuterium plasma by hollow cathode discharge to simulate the dust production in a tokamak. The morphology of the deposited tungsten can be described as a film with spherical particles on it. Thermal desorption spectra of the deposited tungsten show extremely high desorption of the peak positions. It is also found that there is a maximum retention of deuterium in the deposited tungsten samples due to the dynamic equilibrium of the deposition and sputtering process on the substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号