首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A systematic investigation was carried out on the extraction of Sb(III) and (V) with HDEHP from various acidic, neutral and alkaline solutions. Antimony(III) is best extracted from neutral or slightly acidic solutions, and the E values are nearly the same in the forward and backward extractions. Antimony(V) extraction is high only from concentrated HCl and HClO4, and the E values are much larger in the backward direction. Extraction and separation of Sb(III) and (V) was studied as a function of acidity, alkalinity, anion and water-miscible organic additives in the aqueous phase, as well as the diluent used and HDEHP molarity. Separation factors obtained for Sb(III) and (V) were higher than when using isopropyl ether as solvent, which was hitherto used for this purpose.  相似文献   

2.
The paper presents a procedure for the multi-element inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Total As(III, V), Se(IV, VI) and Sb(III, V) were determined according to the following procedure: titanium dioxide (TiO2) was used to adsorb inorganic species of As, Se and Sb in sample solution; after filtration, the solid phase was prepared to be slurry for determination. For As(III), Se(IV) and Sb(III), their inorganic species were coprecipitated with Pb-PDC, dissolved in dilute nitric acid, and then determined. The concentrations of As(V), Se(VI) and Sb(V) can be calculated by the difference of the concentrations obtained by the above determinations. For the determination of As(III), Se(IV) and Sb(III), palladium was chosen as a modifier and pyrolysis temperature was 800 °C. Optimum conditions for the coprecipitation were listed for 100 ml of sample solution: pH 3.0, 15 min of stirring time, 40.0 μg l−1 Pb(NO3)2 and 150.0 μg l−1 APDC. The proposed method was applied to the determination of trace amounts of As(III, V), Se(IV, VI) and Sb(III, V) in river water and seawater.  相似文献   

3.
Summary A method is described for the speciation of Sb(III) and Sb(V) using HG-AAS. The efficiency of stibine generation using different pH, from Sb(III) and Sb(V) solutions, was tested. At high pH-values Sb(V) is not reduced to form stibine, Sb(III) being selectively determined. The three acids HCl, H2SO4 and H3PO4 at controlled pH were used to generate stibine, H3PO4 being the most satisfactory for antimony speciation. The interference of Sb(V) was studied for the case of Sb(III) determination with stibine generation in H3PO4 medium (pH 1.81). The speciation of Sb(III) and Sb(V) is possible up to a ratio of 1:9.  相似文献   

4.
A new procedure for the determination of inorganic arsenic (III,V) and antimony (III,V) in water samples by dispersive liquid–liquid micro extraction separation and electrothermal atomic absorption spectrometry (ETAAS) is presented. At pH 1, As(III) and Sb(III) are complexed with ammonium pyrrolidine dithiocarbamate and extracted into the fine droplets formed when mixing carbon tetrachloride (extraction solvent), methanol (disperser solvent) and the sample solution. After extraction, the phases are separated by centrifugation, and As(III) and Sb(III) are determined in the organic phase. As(V) and Sb(V) remain in the aqueous layer. Total inorganic As and Sb are determined after the reduction of the pentavalent forms with sodium thiosulphate. As(V) and Sb(V) are calculated by difference. The detection limits are 0.01 and 0.05 µg L− 1 for As(III) and Sb(III), respectively, with an enrichment factor of 115. The relative standard deviation is in the 2.9–4.5% range. The procedure has been applied to the speciation of inorganic As and Sb in bottled, tap and sea water samples with satisfactory results.  相似文献   

5.
A new method of hollow fiber supported liquid membrane extraction (HF-SLME) coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) for the speciation of Sb(III) and Sb(V) in environmental and biological samples has been developed. The method is based on the complex of Sb(III) with sodium diethyldithiocarbamate (DDTC). The formed hydrophobic complex is subsequently extracted into the lumen of hollow fiber, whereas Sb(V) is remained in aqueous solutions. The extraction organic phase was injected into TS-FF-AAS for the determination of Sb(III). Total Sb concentration was determined after reduction of Sb(V) to Sb(III) in the presence of l-cysteine and the extraction procedure mentioned above. Sb(V) was calculated by subtracting of Sb(III) from the total Sb. DDTC was used as complexing reagent. 1-Octanol was immobilized in the pores of the polypropylene hollow fiber as liquid membrane and also used as the acceptor solution. Some parameters that influenced extraction and determination were evaluated in detail, such as concentration of sodium diethyldithiocarbamate (DDTC), type of organic solvent, pH of samples, stirring rates, extraction time, as well as interferences. Under optimized conditions, a detection limit of 0.8 ng mL−1 and an enrichment factor of 160 were achieved. The relative standard deviation (RSD) was 6.2% for Sb(III) (50 ng mL−1, n = 5). The proposed method was successfully applied to the speciation of Sb(III) and Sb(V) in environmental and biological samples with satisfactory results.  相似文献   

6.
A simple, rapid and selective electrochemical method is proposed as a novel and powerful analytical technique for the solid phase determination of less than 4% antimony in lead-antimony alloys without any separation and chemical pretreatment. The proposed method is based on the surface antimony oxidation of Pb/Sb alloy to Sb(III) at the thin oxide layer of PbSO4/PbO that is formed by oxidation of Pb and using linear sweep voltammetric (LSV) technique. Determination was carried out in concentrate H2SO4 solution. The influence of reagent concentration and variable parameters was studied. Antimony of Pb/Sb alloys can be determined in the range of 0.0056–4.00% with a detection limit of 0.0045% and maximum relative standard deviation of 4.26%. This method was applied for the determination of Sb in lead/acid battery grids satisfactory.  相似文献   

7.
Liquid chromatography is the most suitable technique for antimony speciation in several types of samples. However, efficiency can be poor for some of these peaks, especially Sb(III) and Me3SbCl2 (TMSb). Weak and strong anion exchange stationary phases are mainly used for antimony speciation in several chromatographic conditions. The present study examines the possible contribution of the interaction between antimony species (Sb(III), Sb(V) and TMSb) and stationary phase support to the overall retention mechanism in their chromatographic separation. Several SPE cartridges, selected from those mainly used as support in anion exchange columns, were assayed. Sb (V) was quantitatively eluted from the PSDVB (polystyrene divinylbenzene) and SiO2 phases, showing the absence of interaction. Sb (III) showed some interaction with the PSDVB phase; TMSb showed strong retention with all the cartridges studied and it was only eluted from the PSDVB phase.  相似文献   

8.
《Analytical letters》2012,45(3):543-554
Abstract

A spectrophotometric procedure based on hydride generation and flow analysis is proposed for determination of antimony (III) [Sb(III)] and total antimony (Sb) in pharmaceutical samples. Firstly, Sb(III) reacts with hydrogen species generated in the system, forming antimony hydride. The reaction leads to a decrease in the permanganate concentration and, hence, in the intensity of the color of this specie, which is spectrophotometrically measured at 528 nm. Total Sb is determined as Sb(III) after Sb(V) reduction using 0.02% (m/v) KI. Some parameters, such as the number of channels of the gas phase separator, injection volume, coil length, and KBH4 concentration, are investigated. The system presents a frequency of ca. 100 h?1 and precision <3.0% [expressed as relative standard deviation (RSD) of 30 measurements using a 3.0 mg L?1 Sb(III) solution]. The analytical curve ranging from 0.5 mg L?1 to 5.0 mg L?1 (r>0.998; n=5) permits limit of detection (LOD) and limit of quantification (LOQ) of 83 and 250 µg L?1. For total Sb, the accuracy is checked by atomic absorption spectrometry applying the t test and the results are in accordance at the 95% confidence level. Recovery tests are used to check the accuracy for Sb(III) determination, and the recoveries are between 95% and 105%.  相似文献   

9.
Selective sorption of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a microcolumn packed with C16-bonded silica gel phase was used for the determination of Sb(III) and of total inorganic antimony after reducing Sb(V) to Sb(III) by l-cysteine. A flow injection system composed of a microcolumn connected to the tip of the autosampler was used for preconcentration. The sorbed antimony was directly eluted with ethanol into the graphite furnace and determined by AAS. The detection limit for antimony was significantly lowered to 0.007 μg l−1 in comparison to 1.7 μg l−1 for direct injection GFAAS. This procedure was applied for speciation determinations of inorganic antimony in tap water, snow and urine samples. For the investigation of long-term stability of antimony species a flow injection hydride generation atomic absorption spectrometry with quartz tube atomization (FI HG QT AAS) and GFAAS were used for selective determination of Sb(III) in the presence of Sb(V) and total content of antimony, respectively. Investigations on the stability of antimony in several natural samples spiked with Sb(III) and Sb(V) indicated instability of Sb(III) in tap water and satisfactory stability of inorganic Sb species in the presence of urine matrix.  相似文献   

10.
The speciation of inorganic Sb(III) and Sb(V) ions in aqueous solution was studied. The adsorption behavior of Sb(III) and Sb(V) ions were investigated as iodo and ammonium pyrollidine dithiocarbamate (APDC) complexes on a column filled with Amberlite XAD-8 resin. Sb(III) and Sb(V) ions were recovered quantitatively and simultaneously from a solution containing 0.8 M NaI and 0.2 M H2SO4 by the XAD-8 column. Sb(III) ions were also adsorbed quantitatively as an APDC complex, but the recovery of the Sb(V)-APDC complex was found to be <10% at pH 5. According to these data, the concentrations of total antimony as Sb(III)+Sb(V) ions and Sb(III) ion were determined with XAD-8/NaI+H2SO4 and XAD-8/APDC systems, respectively. The Sb(V) ion concentration was calculated by subtracting the Sb(III) concentration found with XAD-8/APDC system from the total antimony concentration found with XAD-8/NaI+H2SO4 system. The developed method was applied to determine Sb(III) and Sb(V) ions in samples of artificial seawater and wastewater.  相似文献   

11.
Liquid-liquid extraction preconcentration technique which allows the achievement of extremely high ratio between the aqueous and organic phase was specified as semi-microextraction. A modified highly effective liquid phase semi-microextraction (LSME) procedure was developed for preconcentration and determination of ultra trace levels of inorganic antimony species in environmental waters using electrothermal atomic absorption spectrometry (ETAAS) for quantification. Antimony(III) species were selectively extracted as dithiocarbamate complexes from 100 mL aqueous phase into 250 μL xylene at pH range of 5-8. Total Sb was determined using the same extraction system over a sample acidity range of pH 0-1.2 without the need for pre-reduction of Sb(V) to Sb(III). The concentration of Sb(V) was obtained as the difference between that of total antimony and Sb(III). With an 8 min extraction an enrichment factor of 400 was achieved. The limit of detection (3 s) was 2 ng L−1 Sb. The method was not affected by the presence of up to 0.01% humic acid, 0.025 mol L−1 EDTA, 0.01 mol L−1 tartaric acid and 0.001 mol L−1 F. Recoveries of spiked Sb(III) and Sb(V) in river, tap, and sea water samples ranged from 93 to 108%. The results for total antimony concentration in the river water reference material SLRS-5 were in good agreement with the information value. The procedure was applied to the determination and quantification of dissolved antimony species in natural waters.  相似文献   

12.
A new method for the fast and simultaneous determination of Sb(III) and Sb(V) is presented involving the use of anion exchange high-performance liquid chromatography (HPLC), a complexing reagent in the mobile phase, and element specific detection with flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS). Chromatographic parameters such as nature and concentration of the complexing and eluting compounds and pH of the mobile phase were investigated in detail. Additionally, the separation of inorganic Sb(III) and Sb(V) from organically bounded antimony (as (CH3)3SbCl2 and (CH3)3Sb(OH)2) was investigated by using anion, and cation exchange, and reversed phase HPLC. Best separation was obtained with anion exchange HPLC under alkaline conditions. Cation exchange and reversed-phase HPLC were not useful for the separation of the above compounds. With FAAS concentrations in the upper mg L–1 range are detectable, which is not sensitive enough for the analyses of environmental samples. When the chromatographic system was coupled to ICP-MS, the detection limits are in the lower μg L–1 range. The method was applied to various environmental samples with anthropogenic and naturally elevated Sb concentrations.  相似文献   

13.
Solidified floating organic drop microextraction was applied as a separation/preconcentration step prior to the electrothermal atomic absorption spectrometric (ETAAS) determination of ultra trace of antimony species. The method was based on the formation of an extractable complex between Sb(III) and ammonium pyrrolidinedithiocarbamate at pH ~ 5, while Sb(V) was remained in the aqueous phase. The antimony extracted into 1-undecanol was determined by ETAAS. Total antimony was determined after the reduction of Sb(V) to Sb(III) with potassium iodide and ascorbic acid. The amount of Sb(V) was determined from the difference of concentration of total antimony and Sb(III). Under the optimum conditions an enhancement factor of 437.5 and a detection limit of 5.0 ng L?1for the preconcentration of 25 mL of sample was achieved. The relative standard deviation at 300 ng L?1 of antimony was found to be 3.5 % (n = 6). The proposed method was successfully applied to the determination of antimony in tea, basil and natural water samples.  相似文献   

14.
Atomic fluorescence spectrometry was used as an element-specific detector in hybridation with liquid chromatography (LC) and hydride generation for the speciation of Sb(III), Sb(V) and trimethylantimony dichloride (TMSbCl2). The three species were poorly resolved in a single chromatogram but good results were obtained by anion-exchange chromatography, using a mobile phase with 20 mM EDTA and 8 mM hydrogenphthalate to separate Sb(III) and Sb(V) and 1 mM carbonate at pH 10 to separate Sb(V) and TMSbCl2. Calibration graphs were linear between 2 and 100 μg l−1. Detection limits were 0.9, 0.5 and 0.7 μg l−1 for Sb(III), Sb(V) and TMSbCl2, respectively. The method was applied to the speciation of antimony in environmental samples.  相似文献   

15.
A separation procedure for antimony(III) and antimony(V) was developed with the use of chelating celluloses. Sb(III) was separately pre-concentrated on imino diacetic acid–ethyl cellulose in the acidic pH range, in which the uptake of Sb(V) was negligible in the μg L− 1 concentration range. On the other hand, both Sb species Sb(V) and Sb(III) were pre-concentrated on a chloride form of 2,2′-diaminodiethylamine-cellulose. These solid phase extraction procedures were combined with graphite furnace atomic absorption spectrometry (SPE–GFAAS) for Sb detection. Pharmaceutical compounds of organic and inorganic types (ten compounds), as well as mineral water samples (twelve types) were analyzed. Detection limits of 0.18 µg L− 1 Sb(III) and 0.25 µg L− 1 Sb(V) were found in aqueous sample solutions and water samples, respectively, considering a 25-fold pre-concentration. The total Sb, mostly in the form of Sb(V), could be determined in phosphate-containing pharmaceuticals, while in phosphoric acid, Sb(III) was the dominant form. In all other types of samples the Sb content was below the detection threshold, and therefore, the potential suitability of the SPE–GFAAS method for the determination of Sb(III) species was proven by recovery tests of spiked samples. This method ensures the required detection power with regard to the allowable Sb limits established by international organizations.  相似文献   

16.
l-proline was immobilized on controlled pore glass to study the ability of this material for the separation and preconcentration of Sb(III) and Sb(V). The substrate was packed in a minicolumn and incorporated in a flow injection system. The effluents of the on-line solid phase extraction (before and after elution) were directly coupled to the hydride generation inductively coupled plasma optical emission spectrometry system. The effect of pH, sample (and eluent) volume, flow rates of sample loading and elution on separation of Sb(III) e Sb(V) were evaluated. Our experiments demonstrated that Sb(V) was not retained and it was selectively determined during the loading step, while retained Sb(III) was determined after elution. The proposed system was also used for the selective preconcentration of Sb(III). In this case, a preconcentration factor of 11 and a limit of detection of 90 ng L−1 for Sb(III) were achieved when 8 mL of sample were loaded into the column. The speciation analysis of inorganic Sb in river water and effluent samples was performed using the proposed method. The values obtained for total Sb (obtained by sum of Sb(III) and Sb(V)) were in good agreement with expected values. Recoveries of Sb(III) and Sb(V) in the river water Standard Reference Material 1640 (from National Institute of Standard and Technology) and spiked river waters were between 83 and 111%.  相似文献   

17.
A simple, rapid and sensitive method has been developed for the determination of Sb(III) in five antimonial antibilharzial drugs using anodic stripping voltammetry. The method is based on the reduction of Sb(III) on the HMDE, followed by a selected mode of oxidative sweep, i.e. direct current, differential pulse, square-wave or first harmonic alternating current sweep, using 2 mol/L HCl as a supporting electrolyte. Voltammograms for various sample concentrations in the range 3–47 ppb Sb(III) were recorded and the respective calibration graphs constructed. To overcome the expected effect of adsorption of surface active organic compounds on the mercury drop, the standard addition technique of Sb2O3 solution was applied to calculate the recoveries of all the tested antimonials. The method gave reproducible results within 2% and the limit of detection for all measurement modes was 3 ppb. SW and AC modes seem to achieve lower detection limits than the other two modes. The four modes proved to be of equal accuracy and precision.  相似文献   

18.
Nash MJ  Maskall JE  Hill SJ 《The Analyst》2006,131(6):724-730
Novel HPLC-ICP-MS methodologies are developed using strong anion exchange (Phenomenex SAX-SB) and weak anion exchange (Alltec HAAX) stationary phases in conjunction with a range of aqueous mobile phases to enable simultaneous separations of inorganic Sb(III), Sb(V) and organic trimethylantimony dichloride (TMSb) species in synthetic solutions. Optimum isocratic separations of inorganic Sb(V) and Sb(III) species are achieved using mobile phases comprised of ammonium tartrate under controlled pH conditions, and rapid pH gradient elution profiles are developed to facilitate separations of the Sb(V), Sb(III) and TMSb species in a single chromatographic run. Optimum peak resolution is achieved when using the 100 x 4.6 mm HAAX column at 20 degrees C and 100 mM ammonium tartrate mobile phases with a gradient from pH 3.0 to pH 1.2, although a system peak co-elutes with TMSb under these conditions and precludes quantitative analyses. Interestingly, the elution order of Sb(V), Sb(III) and TMSb species reverses when the temperature of the HAAX stationary phase is increased to 60 degrees C, and concurrent use of a less acidic pH gradient elution profile from pH 2.3 to pH 1.5 is shown to enable successful species separations whilst preventing occurrence of the co-eluting system peak. Limits of detection are achieved in the sub ng mL(-1) range using these novel HPLC-ICP-MS methodologies and provide scope for future environmental analysis applications.  相似文献   

19.
A dc polarographic and cyclic voltammetric study has been made of the reduction of Sb(III) ions from 0.01 M HCl+3.99 M HClO4 and 0.001 M HCl+3.999 M HClO4 supporting electrolytes in which a quasi-reversible, respectively irreversible behaviour is observed. It is shown that the Sb(III) reduction can be explained on the assumption of a reaction mechanism that consists of three successive one-electron transfers. Along the reduction wave the Sb(III)→Sb(II) and Sb(II)→Sb(I) step are rate determining, respectively at more negative and more positive potentials. Kinetic parameters were determined and the rate constants are shown to increase with chloride ion concentration.  相似文献   

20.
Extraction processes of indium(III) with 2-octylaminopyridine (2-OAP) from media of various complexing ability, succinate and salicylate, in chloroform have been elucidated. The ion-pair complex has also quantitative extraction in xylene and 1,2-dichloroethane. Indium(III) from organic phase was stripped with 1.0 M hydrochloric acid and determined complexometrically with EDTA. The stoichiometry of the extracted species was found out on the basis of slope analysis. The extraction of indium(III) proceeds by an anion exchange mechanism and the extracted species is [RR′NH2 +In(succinate)2 -](org). Temperature dependence of the extraction equilibrium constant was also examined to estimate the apparent thermodynamic functions (ΔH, ΔG and ΔS) for extraction reaction. It is possible to separate indium(III) from Zn(II), Cd(II), Pb(II), Hg(II), Bi(III), Tl(I), Tl(III), Ga(III), Al(III), Te(IV), Se(IV), Sb(III), Fe(III) and Sn(IV). The method is simple, rapid and reproducible and can be used to determine the indium from samples like alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号