共查询到20条相似文献,搜索用时 15 毫秒
1.
Keskitalo TJ Niemelä MK Krause AO 《Langmuir : the ACS journal of surfaces and colloids》2007,23(14):7612-7619
The interaction between carbon dioxide and two zirconia catalysts-a Cu/ZrO2 catalyst containing 34% copper and a pure ZrO2 catalyst-was studied by pulse adsorption and temperature-programmed desorption methods. Kinetic modeling by nonlinear regression was applied to acquire information on the adsorption and desorption of CO2 relevant in the synthesis of methanol from carbon dioxide. A model that included three types of adsorption sites described well the experimental data for both Cu/ZrO2 and ZrO2. The model assumed first-order kinetics and a Freundlich-type logarithmic dependence of adsorption enthalpy on surface coverage. The parameters of the model were well identified and were in the physically meaningful range. The results indicate that, at 30 degrees C, on both catalysts, carbon dioxide adsorbs reversibly on one type of site and irreversibly on two other types of sites. 相似文献
2.
Heider Nasser ákos Rédey Tatiana Yuzhakova Zsolt Németh Tóth Tamás Ollár 《Reaction Kinetics and Catalysis Letters》2007,92(2):329-335
CO adsorption at low temperature has been used to probe Lewis acid sites created upon dehydroxylation of γ-Al2O3 and reduction of Mo/Al2O3 catalysts, using Fourier Transform Infrared spectroscopy (FTIR).
Carbon-monoxide adsorption on γ-Al2O3 and Mo/Al2O3 catalysts dehydroxylated and reduced at different temperatures was studied at 78 K by IR spectroscopy. However, our results
indicate that there is an approximately linear correlation between the increase either of dehydroxylation or the extent of
reduction of the catalysts and the increasing absorbance of CO due to CO adsorption on Lewis acid sites created upon dehydroxylation
of γ-Al2O3 and reduction of Mo/Al2O3. 相似文献
3.
Moderate basic sites could be created onto mesoporous Si-MCM-41 materials by postsynthesis modification with highly dispersed La2O3. The La2O3-modified MCM-41 materials (designated here as LaM) have been characterized by Fourier transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, X-ray diffraction (XRD), and N2 adsorption/desorption and have been tested as model adsorbents for CO2 adsorption. XRD and N2 adsorption results showed that all LaM materials still maintained their uniform hexagonal mesoporous structure even after postsynthesis modification with La2O3 loading up to 20 wt %. Although the surface area, pore size, and pore volume of LaM materials decreased with increasing La2O3 loading, their capacity for CO2 storage could be significantly improved when La2O3 loading was increased from 0 to 10 wt %. Unidentate and bidentate carbonates have been identified by in situ FTIR as the two types of CO2 species adsorbed on LaM surface. The LaM material also possesses good thermal stability, allowing the model adsorbent to be regenerated at high temperature and recyclable. 相似文献
4.
The properties of acid sites of ZrO2 and SO4/ZrO2-based systems modified by metal ions were studied by DRIFT spectroscopy using acetonitrile-d3 as a probe molecule. In the case of ZrO2. CD3CN interacts with the Lewis acid sites (LAS) with moderate strength. Adsorption on the Brönsted acid sites (BAS) is very weak, which indicates the absence of strong BAS on the surface of ZrO2. Modification of the surface by SO4 groups results in the appearance of a new type of BAS that are capable of adsorbing CD3CN in the polycoordinated form,i.e., stronger complexes with the adsorbate. Addition of metal ions (Fe, Ga, Zn, or Co) leads to the formation of a new type of LAS connected with Fe3+, Ga3+, Zn2+, and Co2+ promoter ions. 相似文献
5.
The adsorption of NO, NO/O2 mixtures and NO2 on pure ZrO2 and on two series of catalysts supported on ZrO2, one containing vanadia and the other molybdena (ZV and ZMo, respectively), has been investigated. The V and Mo surface contents
of the latter were ≤3 atoms nm−2 and ≤5 atoms nm−2, respectively. All samples had been previously submitted to a standard oxidation treatment.
On all samples, only extremely minor amounts of NOx surface species are formed by NO interaction at room temperature (RT). NOx surface species are formed in greater amounts on pure ZrO2 when NO and O2 are coadsorbed at RT; they are mainly nitrites, small amounts of nitrates, and small amounts of (O2NO−H)δ− species; when ZrO2 is warmed to 623 K in the NO/O2 mixture, nitrites decrease, nitrates and (O2NO−H)δ− species increase. The same NOx species as on the ZrO2 surface free from V (or Mo) are formed on ZV (or ZMo) samples with surface V (or Mo) density <1.5 atoms nm−2; however, they occur in decreased amount with increasing V (or Mo) coverage. On ZV samples with a surface V density of 1.5–3
atoms nm−2 (or ZMo samples with a surface Mo density of 1.5–5 atoms nm−2) when NO and O2 are coadsorbed at RT, there is formation of small amounts of nitrites, nitrates (both on ZrO2 surface free from V (or Mo) and at the edges of V- or Mo-polyoxoanions) and NO2
δ+ species, associated with V5+ (or Mo6+) of very strong Lewis acidity; when samples are warmed up 623 K in the NO/O2 mixture, nitrites disappear, nitrates increase, NO2
δ+ species remain constant or slightly decrease. When NO2 is allowed into contact at RT with oxidized samples, surface situations almost identical to those obtained for each sample
warmed to 623 K in NO/O2 mixture is reached. The NOx surface species stable at 623 K, the temperature at which catalysts show the best performance in the selective catalytic
reduction (SCR) of NO by NH3, are nitrates, both on ZrO2 and on polyvanadates or polymolybdates at high nuclearity. On the contrary, nitrites and NO2
δ+ species are unstable at 623 K. 相似文献
6.
Zhu J Albertsma S van Ommen JG Lefferts L 《The journal of physical chemistry. B》2005,109(19):9550-9555
The relationship between the structure of both yttrium-stabilized zirconia (YSZ) and ZrO2 catalysts and their ability to activate N2O and O2 is studied by determination of catalytic properties and characterization with TPD, SEM, and XRD. Furthermore, the role of oxygen species formed via dissociation of either O2 or N2O in catalytic partial oxidation of methane (CPOM) is determined. N2O can be activated at both structural defects (e.g., Zr cations located at corners) and intrinsic oxygen vacancies (Zr'(Zr)-V(O)**Zr'(Zr)) and forms two types of oxygen species (alpha-O and beta-O) on the surface, respectively. In contrast, molecular oxygen gives rise to only one type of oxygen species (beta-O), that is, surface lattice oxygen. This type of oxygen species can be extracted by reaction with methane, forming the intrinsic oxygen vacancies again during CPOM. However, the structural defects are not active for oxygen activation during CPOM. Doping ZrO2 with Y2O3 significantly decreases the number of structural defects via replacement of Zr4+ cations by Y3+ cations, located at corners, steps, kinks, and edges of the crystallites. Calcination at higher temperatures results in less structural defects due to both increasing crystallite size as well as transformation to more regular shaped crystallites. High temperature calcinations also increase the activity of YSZ in CPOM. This is attributed to the increase in the exposition of low index planes, especially those (111) with the lowest surface energy and the highest coordination numbers, induced by the thermal treatment. 相似文献
7.
The surface dependence of CO adsorption on Ceria 总被引:1,自引:0,他引:1
An understanding of the interaction between ceria and environmentally sensitive molecules is vital for developing its role in catalysis. We present the structure and energetics of CO adsorbed onto stoichiometric (111), (110), and (100) surfaces of ceria from first principles density functional theory corrected for on-site Coulomb interactions, DFT+U. DFT+U is applied because it can describe consistently the properties of both the stoichiometric and reduced surfaces. Our major finding is that the interaction is strongly surface dependent, consistent with experiment. Upon interaction of CO with the (111) surface, weak binding is found, with little perturbation to the surface or the molecule. For the (110) and (100) surfaces, the most stable adsorbate is that in which the CO molecule bridges two oxygen atoms and pulls these atoms out of their lattice sites, with formation of a (CO(3)) species. This results in a strong modification to the surface structure, consistent with that resulting from mild reduction. The electronic structure also demonstrates reduction of the ceria surface and consequent localization of charge on cerium atoms neighboring the vacancy sites. The surface-bound (CO(3)) species is identified as a carbonate, (CO(3))(2-) group, which is formed along with two reduced surface Ce(III) ions, in good agreement with experimental infrared data. These results provide a detailed investigation of the interactions involved in the adsorption of CO on ceria surfaces, allowing a rationalization of experimental findings and demonstrate further the applicability of the DFT+U approach to the study of systems in which reduced ceria surfaces play a role. 相似文献
8.
G. Cucinieri Colorio A. Auroux B. Bonnetot 《Journal of Thermal Analysis and Calorimetry》1993,40(3):1267-1276
Acidity and basicity of alumina-boria catalysts supported on porous or non-porous alumina have been studied by adsorption microcalorimetry of probe molecules (ammonia, pyridine and sulphur dioxide). Despite decreasing in initial heats, the total acidity as determined by ammonia adsorption increased in number and strength as a function of percentage of boron oxide. Ammonia, as a strong base, was shown to cover all types sites from strong to weak acid sites. Pyridine, as a weaker probe, was shown to dose only the stronger sites of the samples which stay nearly constant after B2O3 coverage approaching the monolayer. The basic sites of the amphoteric alumina support are neutralized by 10 wt% of boron oxide on non-porous alumina and 20 wt% of B2O3 on porous alumina. The catalytic activity for partial oxidation of ethane increased with acidity and reached a maximum constant value above 20 wt% of boron oxide. 相似文献
9.
Lafaye G Mihut C Especel C Marécot P Amiridis MD 《Langmuir : the ACS journal of surfaces and colloids》2004,20(24):10612-10616
A series of bimetallic Al2O3-supported Rh-Ge catalysts was prepared by surface redox reactions under controlled hydrogen atmosphere. The surface properties of these catalysts were probed via in-situ FTIR spectroscopic studies of adsorbed CO and were compared to those of monometallic Rh catalysts that had undergone similar treatments. The results indicate that Ge addition results in the formation and stabilization of smaller rhodium ensembles at the expense of larger Rh0 surfaces. A charge-transfer mechanism from Ge to Rh is also inferred by the IR results for the high Ge loading samples. Air exposure of the catalysts leads to an irreversible segregation of the two metals and formation of large Rh crystallites. 相似文献
10.
Fourier transform infrared spectroscopic study of surface acidity by pyridine adsorption on Mo/ZrO2-SiO2(Al2O3) catalysts 总被引:1,自引:0,他引:1
Damyanova S Centeno MA Petrov L Grange P 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2001,57(12):2495-2501
Acidity of the oxidic molybdenum catalysts supported on mixed ZrO2-SiO2 and ZrO2-Al2O3 carriers was investigated by Fourier transform infrared spectroscopy of pyridine adsorption. Deposition of molybdenum on ZrO2-SiO2 and ZrO2-Al2O3 supports leads to formation of surface Br?nsted acid sites. The number of the Br?nsted and Lewis acid sites in supported-molybdenum catalysts depends on both the ZrO2 content and the type of the support. With increasing ZrO2 content, the Lewis acid sites increase for both series of catalysts. The Br?nsted acid sites are higher for Mo/ZrO2-SiO2 samples compared to those for Mo/ZrO2-Al2O3 and also increase with zirconia. 相似文献
11.
The authors highlight the importance of transient configurations of atoms on the surface of nanocrystallites, and present methodologies for their investigation. A Monte Carlo method has been developed and is used to simulate the thermodynamic equilibrium of nanometer sized Au nanocrystallites, both free and supported on a MgO(100) surface. The authors find that appreciable numbers of atoms transiently occupy adatom positions on Au(111) facets, even at room temperature. This type of dynamically appearing site is usually neglected in relation to catalysis but may have a significant activity (for CO oxidation, for example). They also observe a complex solid-solid roughening transition which involves a variety of transient local atom configurations on the surface of nanocrystallites. 相似文献
12.
Wang Guishuo Luo Ran Yang Chengsheng Song Jimin Xiong Chuanye Tian Hao Zhao Zhi-Jian Mu Rentao Gong Jinlong 《中国科学:化学(英文版)》2019,62(12):1710-1719
Science China Chemistry - Metal oxide-promoted Rh-based catalysts have been widely used for CO2 hydrogenation, especially for the ethanol synthesis. However, this reaction usually suffers low CO2... 相似文献
13.
Safonova OV Tromp M van Bokhoven JA de Groot FM Evans J Glatzel P 《The journal of physical chemistry. B》2006,110(33):16162-16164
High-energy-resolution fluorescence detection (HERFD) X-ray spectroscopy is presented as a new tool for the identification of the bonding sites of reactants in supported metal catalysts. The type of adsorption site of CO on an alumina-supported platinum catalyst and the orbitals involved in the bonding are identified. Because X-ray absorption spectroscopy (XAS) is element-specific and can be used under high pressures and temperatures, in situ HERFD XAS can be applied to a swathe of catalytic systems, including alloys. 相似文献
14.
V. D. Nissenbaum V. V. Rozanov V. N. Gel'man E. Z. Golosman A. M. Rubinshtein S. V. Krashennikov V. I. Yakerson 《Russian Chemical Bulletin》1978,27(10):1972-1977
Conclusions The relation between the thermodesorption parameters for Co, CO2, and H2O and the activity of copper oxide-zinc-aluminum-calcium catalysts has been discussed. It is suggested that high catalytic activity is associated with high CO, and low CO2 and H2O, adsorption on the nonuniform surface. The thermodesorption parameters are determined by the oxidation-reduction treatment to which the catalyst has been subjected.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2233–2238, October, 1978.For Communication 12, cf. [1]. 相似文献
15.
S. F. Gerasimov 《Reaction Kinetics and Catalysis Letters》1986,32(2):275-280
CO and NO adsorption on photoreduced Mo/SiO2 catalysts has been studied by IR and mass-spectrometric methods. Products of interaction between adsorbed molecules and surface molybdates of various structures have been identified.
- - CO NO CO Mo/SiO2 . .相似文献
16.
Kaden WE Kunkel WA Roberts FS Kane M Anderson SL 《The Journal of chemical physics》2012,136(20):204705
The nature of CO adsorption on Pd(n)/TiO(2)(110) (n = 1, 2, 7, 20) has been examined using temperature-programmed desorption (TPD), temperature-dependent helium ion scattering (TD-ISS), and X-ray photoelectron spectroscopy (XPS). All samples contain the same number of Pd atoms (0.10 ML-equivalent) deposited as different size clusters. The TPD and TD-ISS show that CO binds in two types of sites associated with the Pd clusters. The most stable sites are on top of the Pd clusters ("on-top" sites), however, there are also less stable sites, in which CO is bound in association with, but not on top of the Pd ("peripheral" sites). For saturation CO coverage over a fixed atomic concentration of Pd (present in the form of Pd(n) clusters of varying size), the population of CO in peripheral sites decreases with increasing cluster size, while the on-top site population is size-independent. This is consistent with what geometric considerations would predict for the density of the two types of sites, provided the clusters adsorb predominantly as 2D islands, which ISS results suggest to be the case. The XPS analysis indicates that CO-Pd binding is dominated by π-backbonding to the Pd(n) clusters. The results also show evidence for efficient support-mediated adsorption (reverse-spillover) of CO initially impinging on TiO(2) to binding sites associated with the Pd clusters. 相似文献
17.
The interaction of water molecules with the Cu-CeO(2)(111) catalyst (Cu/CeO(2) and Cu(0.08)Ce(0.92)O(2)) is studied systematically by using the DFT+U method. Although both molecular and dissociative adsorption states of water are observed on all the considered Cu-CeO(2)(111) systems, the dissociation is preferable thermodynamically. Furthermore, the dissociation of water molecule relates to the geometric structure (e.g. whether or not there are oxygen vacancies; whether or not the reduced substrate retains a fluorite structure) and the electronic structure (e.g. whether or not there is reduced cerium, Ce(3+)) of the substrate.In addition, the adsorption of water molecules induces variations of the electronic structure of the substrate, especially for Cu/CeO(2-x)(111)-B (a Cu atom adsorbed symmetrically above the vacancy of the reduced ceria) and highly reduced Cu(0.08)Ce(0.92)O(2)(111), i.e. the Cu(0.08)Ce(0.92)O(2-x)(111)-h. The variations of electronic structure promote the dissociation of water for the highly reduced system Cu(0.08)Ce(0.92)O(2-x)(111)-h. More importantly, the improvement of WGS reaction by Cu-ceria is expected to be by the associative route through different intermediates. 相似文献
18.
The adsorption of CO on Al2O3- and SiO2-supported Ru catalysts has been investigated through FTIR spectroscopy. Deconvolution of the spectra obtained reveals the presence of 11 distinct bands in the case of Ru/Al2O3 and 10 bands in the case of Ru/SiO2, which were assigned to different carbonyl species adsorbed on reduced as well as partially oxidized Ru sites. Although most of these bands on both supports are similar, they exhibit substantial differences in terms of stability. In general, the analogous CO species on Ru/Al2O3 are adsorbed stronger than those on Ru/SiO2, with the most stable species observed being a dicarbonyl adsorbed on metallic Ru (i.e., Ru0(CO)2). Following sintering of the Ru, the ratio of multicarbonyl to monocarbonyl adsorption is reduced substantially because of the lack of isolated sites or small Ru clusters that enable the formation of multicarbonyl species via oxidative disruption. Finally, in the presence of O2, the main features observed correspond to monocarbonyl, dicarbonyl, and tricarbonyl species adsorbed on partially oxidized Run+. The intensities of all bands decrease drastically at temperatures above 210 degrees C because of the onset of CO oxidation, which results in substantially reduced surface coverage. 相似文献
19.
Riguetto BA Bueno JM Petrov L Marques CM 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2003,59(9):2141-2150
CO adsorption on Ru-Sn/SiO(2) catalysts of various Sn/(Ru+Sn) ratios was examined by Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (DRIFTS). The catalysts were prepared by the incipient wetness impregnation method. Catalysts were activated by H(2) reduction at 773 K. CO adsorbed on the catalysts shows spectra whose band frequencies are divided into three groups: (i) High Frequency Region (HFR), containing a band at 2065 cm(-1), (ii) Low Frequency Region 1 (LFR(1)), containing bands at 2040-2015 cm(-1), (iii) Low Frequency Region 2 (LFR(2)), containing bands at 1990 and 1945 cm(-1). The types of adsorbed CO species formed strongly depend on the ratio Sn/(Ru+Sn) in the catalyst, CO pressure and temperature of adsorption. Adsorption of CO on Ru sites in the Ru/SiO(2) catalyst results in LFR(1) bands at 2040-2015 cm(-1), which are independent of the CO pressure but the adsorption complexes are easily destroyed by raising the temperature. The addition of Sn to the catalyst creates new sites for CO adsorption. After adsorption at 298 K, the HFR band at 2065 cm(-1) and LFR(2) bands at 1990-1950 cm(-1) are observed. The relative intensities of these bands increase with increasing Sn-content in the samples. The LFR bands are thermally stable while the HFR band is not. The formation of the corresponding species is favored by increasing the CO pressure. Adsorbed CO species giving LFR(1) bands are assigned to linearly-adsorbed CO on the Ru(0) and/or on the Ru-Sn alloy sites. Adsorbed CO species giving HFR bands are assigned to CO adsorption on Ru(delta+)-O-Sn sites. After low temperature CO adsorption on samples with high Sn-content, only species that show bands at 1990 and 1945 cm(-1) in LFR(2) are observed. 相似文献
20.
Preparations were characterized by specific surface area, thermogravimetry, and X-ray diffractometry. Thermal effects observed were (a) sulfur loss, (b) sintering, (c) crystallization and transformation of the crystalline phase(s). Thermoanalytical curves indicate that decomposition of the sulfate occurs in two distinct steps. Decrease of surface area due to (b) and (c) is concomitant to decomposition of sulfate. Sulfate was found to hinder sintering, crystallization and phase transformations of ZrO2 and TiO2. In low-titania and -zirconia sulfated TiO2-ZrO2 the minor component enhances the effect of sulfate. In equimolar TiO2-ZrO2 sulfate decomposition is accompanied by rapid formation of crystalline TiZrO4.This work was supported by the MOL Rt., Hungary, which is gratefully acknowledged. 相似文献