首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set extended with a series of 3s3p2d1f1g midbond functions. The potential is characterized by two equivalent global minima where the Ar atom is located above and below the phenylacetylene plane at a distance of 3.5781 A? from the molecular center of mass and at an angle of 9.08° with respect to the axis perpendicular to the phenylacetylene plane and containing the center of mass. The calculated interaction energy is -418.9 cm(-1). To check further the potential, we obtain the rovibrational spectrum of the complex and the results are compared to the available experimental data.  相似文献   

2.
In this paper, we report a new intermolecular potential energy surface and rovibrational transition frequencies and line strengths computed for the OCS dimer. The potential is made by fitting energies obtained from explicitly correlated coupled-cluster calculations and fit using an interpolating moving least squares method. The rovibrational Schroedinger equation is solved with a symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All four intermolecular coordinates are included in the calculation. On the potential energy surface we find, previously unknown, cross-shaped isomers and also polar and non-polar isomers. The associated wavefunctions and energy levels are presented. To identify polar and cross states we use both calculations of line strengths and vibrational parent analysis. Calculated rotational constants differ from their experimental counterparts by less than 0.001 cm(-1).  相似文献   

3.
Ne-HCl势能面和振转光谱的理论研究   总被引:5,自引:0,他引:5  
利用量子化学计算方法CCSD(T)和大基组aug-cc-pVTZ加键函数3s3p2d对Ne-HCl体系的分子间势能面进行了理论研究.结果表明,势能面上有两个势阱,分别对应于线性Ne-ClH和Ne-HCl构型.通过精确求解核运动方程发现,该从头算势能面分别支持5个(对Ne-HCl)和7个(Ne-DCl)振动束缚态.计算得到的振转跃迁频率与实值值吻合.  相似文献   

4.
The ground- [NO(X(2)Π)] and excited-state [NO(A(2)Σ(+))] intermolecular potential energy surfaces (IPESs) of the NO-Ne and NO-Ar van der Waals complexes are evaluated using the RCCSD(T) spin-restricted coupled cluster method and d-aug-cc-pVQZ basis set extended with a set of 3s3p2d1f1g midbond functions. These bases are selected from the results of a systematic basis-set convergence study carried out for the NO(A(2)Σ(+))-Ar state. We fit the interaction energies to analytic functions and compare the results to those previously available. The NO-Ar (NO-Ne) IPESs are characterized by absolute minima of -120 and -75 cm(-1) (-58 and -5 cm(-1)) at the ground and first excited state, respectively, located close to the T-shaped geometries for the ground states and at linear dispositions in the case of the excited states. The potentials are further used in the evaluation of the rovibrational spectra of the complexes, and the results are compared to those available in the literature.  相似文献   

5.
The spectrum of nitrous oxide dimer was investigated by constructing new potential energy surfaces using coupled-cluster theory and solving the rovibrational Schro?dinger equation with a Lanczos algorithm. Two four-dimensional (rigid monomer) global ab initio potential energy surfaces (PESs) were made using an interpolating moving least-squares (IMLS) fitting procedure specialized to describe the interaction of two linear fragments. The first exploratory fit was made from 1646 CCSD(T)/3ZaP energies. Isomeric minima and connecting transition structures were located on the fitted surface, and the energies of those geometries were benchmarked using complete basis set (CBS) extrapolations, counterpoise (CP) corrections, and explicitly correlated (F12b) methods. At the geometries tested, the explicitly correlated F12b method produced energies in close agreement with the estimated CBS limit. A second fit to 1757 data at the CCSD(T)-F12b/VTZ-F12 level was constructed with an estimated fitting error of less than 1.5?cm(-1). The second surface has a global nonpolar O-in minimum, two T-shaped N-in minima, and two polar minima. Barriers between these minima are small and some wave functions have amplitudes in several wells. Low-lying rovibrational wave functions and energy levels up to about 150?cm(-1) were computed on the F12b PES using a discrete variable representation/finite basis representation method. Calculated rotational constants and intermolecular frequencies are in very close agreement with experiment.  相似文献   

6.
We report a new three-dimensional ab initio intermolecular potential energy surface for the Ne-H(2)S complex with H(2)S monomer fixed at its experimental average structure. Using the supermolecular approach, the intermolecular potential energies were evaluated at CCSD(T) (coupled cluster with single and double and perturbative triple excitations) level with large basis sets including bond functions. The full counterpoise procedure was employed to correct the basis set superposition error. The planar T-shaped global minimum is located at the intermolecular distance of 3.51 ? with a well depth of 71.57 cm(-1). An additional planar local minimum was found to be separated from the global minimum with an energy barrier of 23.11 cm(-1). In addition, two first-order and one second-order saddle points were also located. The combined radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm were employed to evaluate the rovibrational energy levels for eight isotopic species of the Ne-H(2)S complexes. The rotational transition frequencies for the eight isotopomers were also determined for the ground and first vibrational excited states, which are all in very good agreement with the available experimental values.  相似文献   

7.
The first excited state (S1) intermolecular potential energy surface for the p-difluorobenzene-Ar van der Waals complex is evaluated using the coupled-cluster method and the augmented correlation consistent polarized valence double-zeta basis set extended with a set of 3s3p2d1f1g midbond functions. In order to calculate the S1 interaction energies we use the ground state surface evaluated with the same basis set and the coupled-cluster singles and doubles [CCSD] including connected triple excitations [CCSD(T)] model, and interaction and excitation energies evaluated at the CCSD level. The surface minima are characterized by the Ar atom located above and below the p-difluorobenzene center of mass at a distance of 3.4736 A. The corresponding interaction energy is -435.233 cm-1. The surface is used in the evaluation of the intermolecular level structure of the complex.  相似文献   

8.
The authors present a new five-dimensional potential energy surface for H2-CO2 including the Q3 normal mode for the nu3 antisymmetric stretching vibration of the CO2 molecule. The potential energies were calculated using the supermolecular approach with the full counterpoise correction at the CCSD(T) level with an aug-cc-pVTZ basis set supplemented with bond functions. The global minimum is at two equivalent T-shaped coplanar configurations with a well depth of 219.68 cm-1. The rovibrational energy levels for four species of H2-CO2 (paraH2-, orthoH2-, paraD2-, and orthoD2-CO2) were calculated employing the discrete variable representation (DVR) for radial variables and finite basis representation (FBR) for angular variables and the Lanczos algorithm. Our calculations showed that the off-diagonal intra- and intermolecular vibrational coupling could be neglected, and separation of the intramolecular vibration by averaging the total Hamiltonian with the wave function of a specific vibrational state of CO2 should be a good approximation with high accuracy. The calculated band origin shift in the infrared spectra in the nu3 region of CO2 is -0.113 cm-1 for paraH2-CO2 and -0.099 cm-1 for orthoH2-CO2, which agrees well with the observed values of -0.198 and -0.096 cm-1. The calculated rovibrational spectra for H2-CO2 are consistent with the available experimental spectra. For D2-CO2, it is predicted that only a-type transitions occur for paraD2-CO2, while both a-type and b-type transitions are significant for orthoD2-CO2.  相似文献   

9.
We report an ab initio intermolecular potential energy surface of the Ar-HCCCN complex using a supermolecular method. The calculations were performed using the fourth-order M?ller-Plesset theory with the full counterpoise correction for the basis set superposition error and a large basis set including bond functions. The complex was found to have a planar T-shaped structure minimum and a linear minimum with the Ar atom facing the H atom. The T-shaped minimum is the global minimum with the well depth of 236.81 cm(-1). A potential barrier separating the two minima is located at R=5.57 A and theta=20.39 degrees with the height of 151.59 cm(-1). The two-dimensional discrete variable representation was employed to calculate the rovibrational energy levels for Ar-HCCCN. The rovibrational spectra including intensities for the ground state and the first excited intermolecular vibrational state are also presented. The results show that the spectra are mostly b-type (Delta K(a)=+/-1) transitions with weak a-type (Delta K(a)=0) transitions in structure, which are in good agreement with the recent experimental results [A. Huckauf, W. Jager, P. Botschwina, and R. Oswald, J. Chem. Phys. 119, 7749 (2003)].  相似文献   

10.
An accurate single-sheeted double many-body expansion potential energy surface has been obtained for the ground electronic state of the hydrogen cyanide molecule via a multiproperty fit to ab initio energies and rovibrational data. This includes 106 rovibrational levels and 2313 discrete points, which are fit with a rmsd of 4 cm(-1) and 2.42 kcal mol(-1), respectively, and seven zero first-derivatives that are reproduced at three stationary points. Since the potential also describes accurately the appropriate asymptotic limits at the various dissociation channels, it is commended both for the simulation of rovibrational spectra and reaction dynamics.  相似文献   

11.
采用CCSD(T)方法研究了范德华分子体系Xe—N2O复合物的势能面和振转光谱性质,研究表明,该势能面有两个极小点,分别对应T构型和线性Xe—ONN构型,采用离散变量表象和Lanczos算法计算了体系的振转能级,计算结果表明,CCSD(T)势能面支持97个振动束缚态,并对能级进行了指认,计算得到的Xe—N2O转动跃迁频率与实验值吻合得很好。  相似文献   

12.
We report a reliable three-dimensional ab initio intermolecular potential energy surface for the Ar-H(2)S complex with H(2)S monomer fixed at its experimental average structure. The potential energies were evaluated using the supermolecular approach at the coupled-cluster level with a large basis set including bond functions. The full counterpoise procedure was used to correct the basis set superposition error. The potential has a planar T-shaped global minimum with a well depth of 177.48 cm(-1) at the intermolecular distance of 3.72 ?. An additional planar local minimum is also found and is separated from the global minimum with an energy barrier with a height of 47.46 cm(-1). The combined radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm were employed to calculate the rovibrational energy levels for three isotopic species of Ar-H(2)S complexes (Ar-H(2)(32)S, Ar-H(2)(33)S, and Ar-H(2)(34)S). The rotational transition frequencies and structural parameters for the three isotopomers were also determined for the ground and the first excited states, which are all in good agreement with the available experimental values.  相似文献   

13.
We evaluate the first excited-state (S1) intermolecular potential energy surface for the fluorobenzene-Ar van der Waals complex using the coupled cluster method and the augmented correlation-consistent polarized valence double-zeta basis set extended with a set of 3s3p2d1f1g midbond functions. To calculate the S(1) interaction energies, we use ground-state interaction energies evaluated with the same basis set and the coupled cluster singles and doubles (CCSD) including connected triple excitations [CCSD(T)] model and interaction and excitation energies evaluated at the CCSD level. The surface minima are characterized by the Ar atom located above and below the fluorobenzene ring at a distance of 3.5060 A with respect to the fluorobenzene center of mass and at an angle of 5.89 degrees with respect to the axis perpendicular to the fluorobenzene plane. The corresponding interaction energy is -425.226 cm(-1). The surface is used in the evaluation of the intermolecular level structure of the complex, and the results are compared to the experimental data available and to those found in previous theoretical papers on ground-state potentials for similar complexes.  相似文献   

14.
The intermolecular potential energy surface (PES) of Ar interacting with the acetylene cation in its (2)Pi(u) ground electronic state is characterized by infrared photodissociation (IRPD) spectroscopy and quantum chemical calculations. In agreement with the theoretical predictions, the rovibrational analysis of the IRPD spectrum of C(2)H(2) (+)-Ar recorded in the vicinity of the antisymmetric CH stretching fundamental (nu(3)) is consistent with a vibrationally averaged T-shaped structure and a ground-state center-of-mass separation of R(c.m.) = 2.86 +/- 0.09 A. The nu(3) band experiences a blueshift of 16.7 cm(-1) upon complexation, indicating that vibrational excitation slightly reduces the interaction strength. The two-dimensional intermolecular PES of C(2)H(2) (+)-Ar, obtained from coupled cluster calculations with a large basis set, features strong angular-radial coupling and supports in addition to a global pi-bound minimum also two shallow side wells with linear H-bound geometries. Bound state rovibrational energy level calculations are carried out for rotational angular momentum J = 0-10 (both parities) employing a discrete variable representation-distributed Gaussian basis method. Effective spectroscopic constants are determined for the vibrational ground state by fitting the calculated rotational energies to the standard Watson A-type Hamiltonian for a slightly asymmetric prolate top.  相似文献   

15.
The intermolecular interaction potential of the H2-H2 system was calculated by an ab initio molecular orbital method using several basis sets (up to 6-31 lG(3pd)) with inclusion of the electron correlation correction of the Møller-Plesset perturbation method and the basis set superposition error (BSSE) correction of the counterpoise method in order to evaluate the basis set effect. The calculated interaction energies depend strongly on the basis set used. Whereas the interaction energies of the repulsive and coulombic energy components calculated at the Hartree-Fock level are not affected by a change of basis set, the dispersion energy component depends strongly on the basis set used. Parameters of an exp-6-1 type non-bonding interaction potential were optimized on the basis of the MP4(SDTQ)/6-311G(3p) level intermolecular interaction energies of the H2-H2 system.  相似文献   

16.
A computational study on the intermolecular potential energy of 44 different orientations of F2 dimers is presented. Basis set superposition error (BSSE) corrected potential energy surface is calculated using the supermolecular approach at CCSD(T) and QCISD(T) levels of theory. The interaction energies obtained using the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets are extrapolated to the complete basis set limit using the latest extrapolation scheme. The basis set effect is checked and it is found that the extrapolated intermolecular energies provide the best compromise between the accuracy and computational cost. Among 1320 energy points of F2–F2 system covering more relative orientations, the most stable structure of the dimers was obtained with a well depth of ?146.62 cm?1 that related to cross configuration, and the most unstable structure is related to linear orientation with a well depth of ?52.63 cm?1. The calculated second virial coefficients are in good agreement with experimental data. The latest extrapolation scheme of the complete basis set limit at the CCSD(T) level of theory is used to determine the intermolecular potential energy surface of the F2 dimer. Comparing the results obtained by the latest scheme with those by older schemes show that the new approach provides the best compromise between accuracy and computational cost.  相似文献   

17.
Several features and the performance of the recently published [P. Jankowski and M. Ziolkowski, Mol. Phys. 104, 2293 (2006)] three-dimensional intermolecular potential energy surface for the Ar-HF complex have been investigated. This full-dimensional surface has been obtained using the method of the local expansion of the exact interaction energy surface [P. Jankowski, J. Chem. Phys. 121, 1655 (2004)] in the Taylor series with respect to intramolecular coordinates. The interaction energies have been calculated with the coupled-cluster supermolecular method with single, double, and noniterative triple excitations. The convergence of the interaction energy with respect to the size of the basis set is discussed. The two-dimensional surfaces resulting from averaging of the full-dimensional surface over the intramolecular vibration of HF have been obtained and directly compared to the empirical H6(4,3,2) set of surfaces proposed by Hutson [J. Chem. Phys. 96, 6752 (1992)]. A very good agreement has been observed. The averaged potentials have been used to calculate the rovibrational energy levels of the Ar-HF and Ar-DF complexes and compared to the experimental data. The accuracy of rovibrational calculations achieved with the new surface is much better than with any of the ab initio surfaces available so far. Predictions of the rovibrational energy levels and spectroscopic constants have also been done for Ar-HF with HF in the v=4,5 vibrational states, and for Ar-DF and DF in the v=3,4 states. The full-dimensional surface studied in this paper is the first ab initio surface which is fully compatible with the empirical H6(4,3,2) surface proposed by Hutson.  相似文献   

18.
All the pure rotational transitions reported in the previous studies [J. Chem. Phys. 113, 10121 (2000); J. Mol. Spectrosc. 222, 22 (2003)] and newly observed rotation-vibration transitions, P = 1/2 <-- 3/2, for Ar-SH and Ar-SD [J. Chem. Phys. (2005), the preceding paper] have been simultaneously analyzed to determine a new intermolecular potential-energy surface of Ar-SH in the ground state. A Schrodinger equation considering the three-dimensional freedom of motion for an atom-diatom complex in the Jacobi coordinate, R, theta, and r, was numerically solved to obtain energies of the rovibrational levels using the discrete variable representation method. A three-dimensional potential-energy surface is determined by a least-squares fitting with initial values of the parameters for the potential obtained by ab initio calculations at the RCCSD(T)/aug-cc-pVTZ level of theory. The potential well reproduces all the observed data in the microwave and millimeter wave regions with parity doublings and hyperfine splittings. Several low-lying rovibrational energies are calculated using the new potential-energy surface. The dependence of the interaction energy between Ar and SH(2pi(i)) on the bond length of the SH monomer is discussed.  相似文献   

19.
The infrared spectrum of the Al(+)-H(2) complex is recorded in the H-H stretch region (4075-4110 cm(-1)) by monitoring Al(+) photofragments. The H-H stretch band is centered at 4095.2 cm(-1), a shift of -66.0 cm(-1) from the Q(1)(0) transition of the free H(2) molecule. Altogether, 47 rovibrational transitions belonging to the parallel K(a)=0-0 and 1-1 subbands were identified and fitted using a Watson A-reduced Hamiltonian, yielding effective spectroscopic constants. The results suggest that Al(+)-H(2) has a T-shaped equilibrium configuration with the Al(+) ion attached to a slightly perturbed H(2) molecule, but that large-amplitude intermolecular vibrational motions significantly influence the rotational constants derived from an asymmetric rotor analysis. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 3.03 A, decreasing by 0.03 A when the H(2) subunit is vibrationally excited. A three-dimensional potential energy surface for Al(+)-H(2) is calculated ab initio using the coupled cluster CCSD(T) method and employed for variational calculations of the rovibrational energy levels and wave functions. Effective dissociation energies for Al(+)-H(2)(para) and Al(+)-H(2)(ortho) are predicted, respectively, to be 469.4 and 506.4 cm(-1), in good agreement with previous measurements. The calculations reproduce the experimental H-H stretch frequency to within 3.75 cm(-1), and the calculated B and C rotational constants to within approximately 2%. Agreement between experiment and theory supports both the accuracy of the ab initio potential energy surface and the interpretation of the measured spectrum.  相似文献   

20.
We report an ab initio intermolecular potential energy surface calculation on the He-N(2)O complex with N(2)O at its ground state using a supermolecular approach. The calculation was performed at the coupled-cluster [CCSD(T)] level, with the full counterpoise correction for the basis set superposition error and a large basis set including midpoint bond functions. The CCSD(T) potential is found to have two minima corresponding to the T-shaped and linear He-ONN structures. The T-shaped minimum is the global minimum. The two-dimensional discrete variable representation method was employed to calculate the rovibrational energy levels for (4)He-N(2)O and (3)He-N(2)O with N(2)O at its ground and nu(3) excited states. The results indicate that the CCSD(T) potential supports five and four vibrational bound states for the (4)He-N(2)O and (3)He-N(2)O, respectively. Moreover, the calculations on the line intensities of the rotational transitions in the nu(3) region of N(2)O for the ground vibrational state shows that the (3)He-N(2)O spectrum is dominated by a-type transitions (DeltaK(a)=0), while the (4)He-N(2)O spectrum is contributed by both the a-type and b-type (DeltaK(a)=+/-1) transitions. The calculated transition frequencies and the intensities are in good agreement with the observed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号