首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We propose to use an externally applied uniform electric field to alter the distribution of particles on the surface of a drop immersed in another immiscible liquid. Specifically, we seek to generate well-defined concentrated regions at the drop surface while leaving the rest of the surface particle free. Experiments show that when the dielectric constant of the drop is greater than that of the ambient liquid the particles for which the Clausius-Mossotti factor is positive move along the drop surface to the two poles of the drop. Particles with a negative Clausius-Mossotti factor, on the other hand, move along the drop surface to form a ring near the drop equator. The opposite takes place when the dielectric constant of the drop is smaller than that of the ambient liquid, namely particles for which the Clausius-Mossotti factor is positive form a ring near the equator while those for which such a factor is negative move to the poles. This motion is due to the dielectrophoretic force that acts upon particles because the electric field on the surface of the drop is nonuniform, despite the uniformity of the applied electric field. Experiments also show that when small particles collect at the poles of a deformed drop the electric field needed to break the drop is smaller than without particles. These phenomena could be useful to concentrate particles at a drop surface within well-defined regions (poles and equator), separate two types of particles at the surface of a drop or increase the drop deformation to accelerate drop breakup.  相似文献   

2.
We present the results of molecular dynamics simulation of crystal nucleation in a supercooled Lennard-Jones liquid. Temperature and baric dependences of the nucleation rate, the Zeldovich factor, nucleus size diffusion coefficient, the radius, and the pressure in a critical crystal nucleus are defined in computer simulation. The data obtained have been used in the framework of classical nucleation theory to calculate the effective surface energy of crystal nuclei γ(e). It is shown that the value of γ(e) at T = const exceeds the value of the interfacial free energy at a flat crystal-liquid interface γ(∞) and γ(e) < γ(∞) at p = const.  相似文献   

3.
A thermodynamically consistent formula is derived for the nucleation work in multicomponent homogeneous nucleation. The derivation relies on the conservative dividing surface which defines the nucleus as having specific surface energy equal to the specific surface energy sigma0 of the interface between the macroscopically large new and old phases at coexistence. Expressions are given for the radius of the nucleus defined by the conservative dividing surface and by the surface of tension. As a side result, the curvature dependence of the surface tension sigmaT of the nucleus defined by the surface of tension is also determined. The analysis is valid for nuclei of any size, i.e., for nucleation in the whole range of conditions between the binodal and the spinodal of the metastable old phase provided the inequality sigmaT < or = sigma0 is satisfied. It is found that under the conditions of validity of the analysis the nucleation rate is higher than the nucleation rate given by the classical nucleation theory. The general results are applied to nucleation of unary liquids or solids in binary gaseous, liquid or solid mixtures.  相似文献   

4.
The homogeneous nucleation of bismuth supersaturated vapor is studied in a laminar flow quartz tube nucleation chamber. The concentration, size, and morphology of outcoming aerosol particles are analyzed by a transmission electron microscope (TEM) and an automatic diffusion battery (ADB). The wall deposit morphology is studied by scanning electron microscopy. The rate of wall deposition is measured by the light absorption technique and direct weighting of the wall deposits. The confines of the nucleation region are determined in the "supersaturation cut-off" measurements inserting a metal grid into the nucleation zone and monitoring the outlet aerosol concentration response. Using the above experimental techniques, the nucleation rate, supersaturation, and nucleation temperature are measured. The surface tension of the critical nucleus and the radius of the surface of tension are determined from the measured nucleation parameters. To this aim an analytical formula for the nucleation rate is used, derived from author's previous papers based on the Gibbs formula for the work of formation of critical nucleus and the translation-rotation correction. A more accurate approach is also applied to determine the surface tension of critical drop from the experimentally measured bismuth mass flow, temperature profiles, ADB, and TEM data solving an inverse problem by numerical simulation. The simulation of the vapor to particles conversion is carried out in the framework of the explicit finite difference scheme accounting the nucleation, vapor to particles and vapor to wall deposition, and particle to wall deposition, coagulation. The nucleation rate is determined from simulations to be in the range of 10(9)-10(11) cm(-3) s(-1) for the supersaturation of Bi(2) dimers being 10(17)-10(7) and the nucleation temperature 330-570 K, respectively. The surface tension σ(S) of the bismuth critical nucleus is found to be in the range of 455-487 mN/m for the radius of the surface of tension from 0.36 to 0.48 nm. The function σ(S) changes weakly with the radius of critical nucleus. The value of σ(S) is from 14% to 24% higher than the surface tension of a flat surface.  相似文献   

5.
The nucleation of graphene on a transition metal surface, either on a terrace or near a step edge, is systematically explored using density functional theory calculations and applying the two-dimensional (2D) crystal nucleation theory. Careful optimization of the supported carbon clusters, C(N) (with size N ranging from 1 to 24), on the Ni(111) surface indicates a ground state structure transformation from a one-dimensional C chain to a 2D sp(2) C network at N ≈ 10-12. Furthermore, the crucial parameters controlling graphene growth on the metal surface, nucleation barrier, nucleus size, and nucleation rate on a terrace or near a step edge are calculated. In agreement with numerous experimental observations, our analysis shows that graphene nucleation near a metal step edge is superior to that on a terrace. On the basis of our analysis, we propose the use of graphene seeds to synthesize high-quality graphene in large area.  相似文献   

6.
The thermodynamics of surface-stimulated crystal nucleation demonstrates that if at least one of the facets of the crystal is only partially wettable by its melt, then it is thermodynamically more favorable for the nucleus to form with that facet at the droplet surface rather than within the droplet. So far, however, the kinetic aspects of this phenomenon had not been studied at all. In the present paper, a kinetic theory of homogenous crystal nucleation in unary droplets is proposed by taking into account that a crystal nucleus can form not only in the volume-based mode (with all its facets within the droplet) but also in the surface-stimulated one (with one of its facets at the droplet surface). The theory advocates that even in the surface-stimulated mode crystal nuclei initially emerge (as subcritical clusters) homogeneously in the subsurface layer, not "pseudo-heterogeneously" at the surface. A homogeneously emerged subcritical crystal can become a surface-stimulated nucleus due to density and structure fluctuations. This effect contributes to the total rate of crystal nucleation (as the volume-based mode does). An explicit expression for the total per-particle rate of crystal nucleation is derived. Numerical evaluations for water droplets suggest that the surface-stimulated mode can significantly enhance the per-particle rate of crystal nucleation in droplets as large as 10 microm in radius. Possible experimental verification of the proposed theory is discussed.  相似文献   

7.
Using molecular dynamics simulations on the microsecond time scale, we investigate the nucleation and growth mechanisms of CO(2) hydrates in a water/CO(2)/silica three-phase system. Our simulation results indicate that the CO(2) hydrate nucleates near the three-phase contact line rather than at the two-phase interfaces and then grows along the contact line to form an amorphous crystal. In the nucleation stage, the hydroxylated silica surface can be understand as a stabilizer to prolong the lifetime of adsorbed hydrate cages that interact with the silica surface by hydrogen bonding, and the adsorbed cages behave as the nucleation sites for the formation of an amorphous CO(2) hydrate. After nucleation, the nucleus grows along the three-phase contact line and prefers to develop toward the CO(2) phase as a result of the hydrophilic nature of the modified solid surface and the easy availability of CO(2) molecules. During the growth process, the population of sI cages in the formed amorphous crystal is found to increase much faster than that of sII cages, being in agreement with the fact that only the sI hydrate can be formed in nature for CO(2) molecules.  相似文献   

8.
Amyloid aggregates are believed to grow through a nucleation mediated pathway, but important aggregation parameters, such as the nucleation radius, the surface tension of the aggregate, and the free energy barrier toward aggregation, have remained difficult to measure. Homogeneous nucleation theory, if applicable, can directly relate these parameters to measurable quantities. We employ fluorescence correlation spectroscopy to measure the particle size distribution in an aggregating solution of Alzheimer's amyloid beta molecule (Abeta(1-40)) and analyze the data from a homogeneous nucleation theory perspective. We observe a reproducible saturation concentration and a critical dependence of various aspects of the aggregation process on this saturation concentration, which supports the applicability of the nucleation theory to Abeta aggregation. The measured size distributions show a valley between two peaks ranging from 5 to 50 nm, which defines a boundary for the value of the nucleation radius. By carefully controlling the conditions to inhibit heterogeneous nucleation, we can hold off nucleation in a 25 times supersaturated solution for at least up to 3 h at room temperature. This quasi-homogeneous kinetics implies that at room temperature, the surface energy of the Abeta/water interface is > or =4.8 mJ/m(2), the free energy barrier to nucleation (at 25 times supersaturation) is > or =1.93x10(-19) J, and the number of monomers in the nucleus is > or =29.  相似文献   

9.
The heterogeneous nucleation of a liquid from a vapor in contact with a planar solid surface or a solid surface with cavities is examined on the basis of the kinetic theory of nucleation developed by Nowakowski and Ruckenstein [J. Phys. Chem. 96 (1992) 2313] which is extended to nonuniform fluid density distribution (FDD) in the nucleus. The latter is determined under the assumption that at each moment the FDD in the nucleus is provided by the density functional theory (DFT) for a nanodrop. As a result of this assumption, the theory does not require to consider that the contact angle which the nucleus makes with the solid surface and the density of the nucleus are independent parameters since they are provided by the DFT. For all considered cases, the nucleation rate is higher in the cavities than on a planar surface and increases with increasing strength of the fluid-solid interactions and decreasing cavity radius. The difference is small at high supersaturations (small critical nuclei), but becomes larger at low supersaturations when the critical nucleus has a size comparable with the size of the cavity. The nonuniformity of the FDD in the nucleus decreases the nucleation rate when compared to the uniform FDD.  相似文献   

10.
A dynamic surface tension detector (DSTD) was used to examine the molecular diffusion and surface adsorption characteristics of surface-active analytes as a function of solution viscosity. Dynamic surface tension is determined by measuring the differential pressure across the air/liquid interface of repeatedly growing and detaching drops. Continuous surface tension measurement throughout the entire drop growth is achieved for each eluting drop (at a rate of 30 drops/min for 2 μl drops), providing insight into the kinetic behavior of molecular diffusion and orientation processes at the air/liquid interface. Three-dimensional data are obtained through a calibration procedure previously developed, but extended herein for viscous solutions, with surface tension first converted to surface pressure, which is plotted as a function of elution time axis versus drop time axis. Thus, an analyte that lowers the surface tension results in an increase in surface pressure. The calibration procedure derived for the pressure-based DSTD was successfully extended and implemented in this report to experimentally determine standard surface pressures in solutions of varied viscosity. Analysis of analytes in viscous solution was performed at low analyte concentration, where the observed analyte surface activity indicates that the surface concentration is at or near equilibrium when in a water mobile phase (viscosity of 1.0 Cp). Two surface-active analytes, sodium dodecyl sulfate (SDS) and polyethylene glycol (MW 1470 g/mol, PEG 1470), were analyzed in solutions ranging from 0 to 60% (v/v) glycerol in water, corresponding to a viscosity range of 1.0-15.0 Cp. Finally, the diffusion-limited surface activity of SDS and PEG 1470 were observed in viscous solution, whereby an increase in viscosity resulted in a decreased surface pressure early in drop growth. The dynamic surface pressure results reported for SDS and PEG 1470 are found to correlate with solution viscosity and analyte diffusion coefficient via the Stokes-Einstein equation.  相似文献   

11.
The nucleation of water vapors on the surface of a fragment of silver iodide crystal is simulated by the Monte Carlo method under the conditions similar to natural conditions in a humid atmosphere. A stable monolayer island of water molecules with clearly pronounced features of hexagonal symmetry and low orientational order is formed at the initial stage, when the vapor pressure is still lower than the saturating pressure. The island readily grows over the surface and, in the unsaturated vapor, does not grow in the direction perpendicular to the surface. The formed monolayer represents a substrate for further growth of a condensed phase and, eventually, is responsible for the mechanism of nucleation on the crystal surface. Water molecules are held by the substrate mainly owing to the directional electrostatic interaction between the negatively charged oxygen atoms and positively charged silver ions. The interaction with iodine ions lowers the binding of the island (nucleus) and the substrate. A point defect in the form of an extra ion on the surface does not change the planar shape of the nucleus and virtually does not distort its hexagonal structure. Indirect experimental data supporting the formation of a water monolayer at the stage preceding nucleation, as well as the data of observations indicating the important role of defects on a crystal surface, are reported.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 4, 2005, pp. 548–560.Original Russian Text Copyright © 2005 by Shevkunov.  相似文献   

12.
Molecular dynamics simulations are used to investigate heterogeneous ice nucleation in model systems where an electric field acts on water molecules within 10-20 ? of a surface. Two different water models (the six-site and TIP4P/Ice models) are considered, and in both cases, it is shown that a surface field can serve as a very effective ice nucleation catalyst in supercooled water. Ice with a ferroelectric cubic structure nucleates near the surface, and dipole disordered cubic ice grows outward from the surface layer. We examine the influences of temperature and two important field parameters, the field strength and distance from the surface over which it acts, on the ice nucleation process. For the six-site model, the highest temperature where we observe field-induced ice nucleation is 280 K, and for TIP4P/Ice 270 K (note that the estimated normal freezing points of the six-site and TIP4P/Ice models are ~289 and ~270 K, respectively). The minimum electric field strength required to nucleate ice depends a little on how far the field extends from the surface. If it extends 20 ?, then a field strength of 1.5 × 10(9) V/m is effective for both models. If the field extent is 10 ?, then stronger fields are required (2.5 × 10(9) V/m for TIP4P/Ice and 3.5 × 10(9) V/m for the six-site model). Our results demonstrate that fields of realistic strength, that act only over a narrow surface region, can effectively nucleate ice at temperatures not far below the freezing point. This further supports the possibility that local electric fields can be a significant factor influencing heterogeneous ice nucleation in physical situations. We would expect this to be especially relevant for ice nuclei with very rough surfaces where one would expect local fields of varying strength and direction.  相似文献   

13.
In the condensation mechanism of heterogeneous ice formation, water crystallization occurs after a necessary amount of the liquid phase has accumulated on a substrate surface. In this way, the ice-forming activity of the surface is governed by its adsorption ability with respect to water vapor. The Monte Carlo canonical statistical ensemble method has been used to calculate the free energy, entropy, and work of nucleation of a disordered condensed water phase on the surface of crystalline silver iodide and to determine the surface tension. Comparative calculations have been performed at 260 and 320 K for the defect-free surface of a basal face of a crystal. The surface of a β-AgI crystal is completely covered with a monomolecular film even in unsaturated water vapors. The surface tension at the growing nucleus–substrate interface substantially increases due to the formation of the underlying film, and the growth of the nucleus becomes possible only in a supersaturated vapor. As the vapor density increases, the thickness of the condensed water layer grows, and, at negative Celsius temperatures, conditions are created for its crystallization. The underlying film with pronounced hydrophobic properties hinders nucleation, thereby decreasing the ice-forming activity of the surface in the condensation process. Under these conditions, the observed abnormally high ice-forming activity of silver-iodide aerosol particles may be explained by the presence of numerous crystal defects on the particle surface, with these defects representing channels that provide overcoming the hindering action of the film.  相似文献   

14.
The nucleation of water vapor on the infinite surface of a silver iodide crystal at 260 K is simulated. Long-range electrostatic and polarization interactions are taken into account by the Ewald method. The free energy and work of equilibrium formation of nuclei are calculated at the molecular level by the method of bicanonical statistical ensemble. It is shown that, at the initial stage, the substrate is completely covered with a water monolayer. The substrate tends to decrease by two orders of magnitude the vapor pressure required to form the critical nucleus of a monomolecular film with a size of 102 molecules, the nucleation rate being increased by tens of orders of magnitude as compared to homogeneous nucleation. The saturation pressure above the adsorbed monomolecular film is 12 times lower than that above the flat ice surface. The free energy at the edges of “spots” per unit length is 1.4 × 10?11 J/m. The critical size of the spot increases with a decrease in vapor pressure as the inverse second power of the logarithm of pressure.  相似文献   

15.
Molecular dynamics simulations were used to determine the influence of a methane-water interface on the position and stability of methane hydrate cages. A potential of mean force was calculated as a function of the separation of a methane hydrate cage and a methane-water interface. The hydrate cages are found to be strongly repelled from the methane gas into the water phase. At low enough temperatures, however, the most favorable location for the hydrate cage is at the interface on the water side. Cage lifetime simulations were performed in bulk water and near a methane-water interface. The methane-water interface increases the cage lifetime by almost a factor of 2 compared to cage lifetimes of cages in bulk water. The potential of mean force and the cage lifetime results give additional explanations for the proposed nucleation of gas hydrates at gas-water interfaces.  相似文献   

16.
Molecular dynamics simulations are conducted to investigate homogeneous nucleation and growth of melt in copper described by an embedded-atom method (EAM) potential. The accuracy of this EAM potential for melting is validated by the equilibrium melting point obtained with the solid-liquid coexistence method and the superheating-supercooling hysteresis method. We characterize the atomistic melting process by following the temperature and time evolution of liquid atoms. The nucleation behavior at the extreme superheating is analyzed with the mean-first-passage-time (MFPT) method, which yields the critical size, steady-state nucleation rate, and the Zeldovich factor. The value of the steady-state nucleation rate obtained from the MFPT method is consistent with the result from direct simulations. The size distribution of subcritical nuclei appears to follow a power law similar to three-dimensional percolation. The diffuse solid-liquid interface has a sigmoidal profile with a 10%-90% width of about 12 A near the critical nucleation. The critical size obtained from our simulations is in reasonable agreement with the prediction of classical nucleation theory if the finite interface width is considered. The growth of melt is coupled with nucleation and can be described qualitatively with the Johnson-Meh-Avrami law. System sizes of 10(3)-10(6) atoms are explored, and negligible size dependence is found for bulk properties and for the critical nucleation.  相似文献   

17.
采用悬滴法系统地测定了温度274.2 ~ 282.2 K、压力0.1 ~ 10.1 MPa下甲烷/纯水间界面张力。实验结果表明在恒定温度下界面张力随压力的增加而增大。在高压条件下,压力对界面张力有很大的影响。不同温度和压力下计算出的甲烷在水中的表面过剩浓度结果表明,压力越高,温度越低,甲烷在水溶液中的吸附浓度越高。同时,计算出的甲烷在水溶液中的表面吸附自由能结果表明,在水合物生成条件下,甲烷在水中的吸附比298.2 K更容易。  相似文献   

18.
We report the first visualization of the interfacial turbulence developed at the polarized water/1,2-dichloroethane interface in the form of rotating surface structures. This leads to a remarkable amplification of the faradaic current (polarographic maximum) associated with the transfer of the Na+ ion from 1,2-dichloroethane to water. Interfacial turbulence is visualized at the surface of the sessile electrolyte drop using suspended graphite microparticles as a fluid flow tracer. We show that the magnitude of the faradaic current increases as the circular surface structures rotate more rapidly. The results appear to differ from the profile of the disturbing flow near the mercury/electrolyte interface accompanying polarographic maxima of the first kind.  相似文献   

19.
Highly anomalous crystallization behavior has been achieved in phase-inverting emulsion systems by using nonionic surfactants that induce nucleation. In particular, nucleation can be inhibited at the phase inversion, allowing systems held at, or near, this temperature to undergo crystallization either on heating or cooling. This new phenomenon is demonstrated for 27.4 wt % aqueous glycine solutions emulsified in decane using Span 20 Tween 20 blends. The inhibitory effect on interfacial nucleation at/near the phase inversion is readily shown by the maximum in the induction time for crystallization found in systems at/near the phase-inversion temperature. These findings are unprecedented. An extremely rapid rise in nucleation rate is expected on cooling glycine solutions, owing to the associated increase in supersaturation, the driving force for crystallization. The origin of this highly anomalous behavior is thought to be the low droplet interfacial tension, gammaow, that occurs at the phase-inversion temperature, which results primarily in a substantially increased contact angle between the glycine critical nucleus and the droplet interface. This may present a paradigm shift in crystallization strategies through the use of tunable contact-angle nucleators.  相似文献   

20.
Density functional theory (DFT) with square gradient approximation for the free energy functional and a model density profile are used to obtain an analytical expression for the size-dependent free energy of formation of a liquid drop from the vapor through the process of homogeneous nucleation, without invoking the approximations used in classical nucleation theory (CNT). The density of the liquid drop in this work is not the same as the bulk liquid density but it corresponds to minimum free energy of formation of the liquid drop. The theory is applied to study the nucleation phenomena from supersaturated vapor of Lennard-Jones fluid. The barrier height predicted by this theory is significantly lower than the same in CNT which is rather high. The density at the center of the small liquid drop as obtained through optimization is less than the bulk density which is in agreement with other earlier works. Also proposed is a sharp interface limit of the proposed DFT of nucleation, which is as simple as CNT but with a modified barrier height and this modified classical nucleation theory, as we call it, is shown to lead to improved results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号