首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Wong KM  Tang WS  Lu XX  Zhu N  Yam VW 《Inorganic chemistry》2005,44(5):1492-1498
A series of platinum(II) terpyridyl alkynyl complexes that have been derivatized with basic amino functionalities, [Pt(tpy)(C[triple bond]C-C6H4-NR2-4]X (X = OTf-, R = CH3 1, R = CH2CH2OCH3 2, R = H 3; X = Cl-, R = CH3 4, R = CH2CH2OCH3 5, R = H 6) (tpy = 2,2':6',2' '-terpyridine), have been synthesized and characterized. Their photophysical responses at various acid concentrations were studied. The abilities of the complexes to function as colorimetric and luminescence pH sensors were demonstrated with dramatic color changes and luminescence enhancement upon introduction of acid.  相似文献   

2.
Lin R  Yip JH 《Inorganic chemistry》2006,45(11):4423-4430
Reactions of 9,10-bis(diphenylphosphino)anthracene (PAnP) and AgX (X = OTf-, ClO4-, PF6-, and BF4-) led to luminescent Ag-PAnP complexes with rich structural diversity. Helical polymers [Ag(mu-PAnP)(CH3CN)X]n (X = OTf-, ClO4-, and PF6-) and discrete binuclear [Ag2(mu-PAnP)2(CH3CN)4](PF6)2, trinuclear [Ag3(mu-PAnP)3 supersetBF4](BF4)2, and tetranuclear [Ag4(mu-PAnP)4 superset(ClO4)2](ClO4)2 metallacycles were isolated from different solvents. The tri- and tetranuclear metallacycles exhibited novel puckered-ring and saddlelike structures. Variable-temperature (VT) 31P{1H}-NMR spectroscopy of the complexes was solvent dependent. The dynamics in CD3CN involve two species, but the exchange processes in CD2Cl2 are more complicated. A ring-opening polymerization was proposed for the exchange mechanism in CD3CN.  相似文献   

3.
A mixture of cyclic gold(I) complexes [Au(2)(μ-cis-dppen)(2)]X(2) (X = OTf 1, PF(6)3) and [Au(cis-dppen)(2)]X (X = OTf 2, PF(6)4) is obtained from the reaction of [Au(tht)(2)]X (tht = tetrahydrothiophene) with one equivalent of cis-dppen [dppen = 1,2-bis(diphenylphosphino)ethylene]. The analogous reaction with trans-dppen or dppa [dppa = bis(diphenylphosphino)acetylene] affords the cyclic trinuclear [Au(3)(μ-trans-dppen)(3)]X(3) (X = OTf 11, PF(6)12) and tetranuclear [Au(4)(μ-dppa)(4)]X(4) (X = OTf 13, PF(6)14, ClO(4)15) gold complexes, respectively. Recrystallization of 15 from CH(2)Cl(2)/MeOH yielded a crystal of the octanuclear gold cluster [Au(8)Cl(2)(μ-dppa)(4)](ClO(4))(2)16. Attempts to prepare dicationic binuclear gold(II) species from the reaction of a mixture of 3 and 4 with halogens gave a mixture of products, the components of which confirmed to be acyclic binuclear gold(I) [Au(2)X(2)(cis-dppen)] (X = I 5, Br 7) and cyclic mononuclear gold(III) [AuX(2)(cis-dppen)]PF(6) (X = I 6, Br 8) complexes. Complexes 11-14 reveal weak emission in butyronitrile glass at 77 K, but they are non-emissive at room temperature. Ab initio modelling was performed to determine the charge state of the gold atoms involved. Extensive structural comparisons were made to experimental data to benchmark these calculations and rationalize the conformations.  相似文献   

4.
A dramatic color change and tremendous emission enhancement have been "switched on" upon increasing diethyl ether ratio in acetonitrile or acetone solution of [Pt(tpy)(CC-CCH)]OTf, attributed to the formation of Pt...Pt and pi-pi interactions. Two crystal forms (dark-green and red) of [Pt(tpy)(CC-CCH)]OTf, together with [Pt(tBu3-tpy)(CC-CCH)]OTf, show different crystal-packing modes as revealed by X-ray crystallography.  相似文献   

5.
The reaction of (NBu(4))(2)[Pt(C triple bond CPh)(4)] with Cd(ClO(4))(2).6H(2)O in a 1:1 molar ratio yields a white solid [PtCd(C triple bond CPh)(4)](n) 1 (75% yield) together with yellow crystals of a very unusual decanuclear platinum-cadmium cluster [Pt(4)Cd(6)(C triple bond CPh)(4)(mu-C triple bond CPh)(12)(mu(3)-OH)(4)] 2 in low yield. Slow diffusion of acetonic solutions of the starting materials under aerobic conditions only produces crystals of 2 which have been shown by an X-ray analysis to be composed of a big hexanuclear cation [Cd(6)(mu(3)-OH)(4)](8+) and four [Pt(C triple bond CPh)(4)](2-) anions, held together by Pt.Cd and pi.Cd acetylide interactions. On the other hand, treatment of the insoluble product 1 with 1 equiv of NBu(4)X yields tetranuclear mixed-metal soluble complexes (NBu(4))(2)[[Pt(mu-C triple bond CPh)(4)](2)(CdX)(2)] (X = Cl A, Br 3, CN 4), which contain two platinate fragments connected by two CdX units through Pt.Cd and mainly Cd.C(alpha) interactions. All complexes are strongly emissive in the solid state at room temperature.  相似文献   

6.
Yam VW  Hui CK  Yu SY  Zhu N 《Inorganic chemistry》2004,43(2):812-821
A series of tetraalkynylplatinate(II) complexes, (NBu(4))(2)[Pt(Ctbd1;CR)(4)] (R = C(6)H(4)N-4, C(6)H(4)N-3, and C(6)H(3)N(2)-5), and the diynyl analogues, (NBu(4))(2)[Pt(Ctbd1;CCtbd1;CR)(4)] (R = C(6)H(5) and C(6)H(4)CH(3)-4), have been synthesized. These complexes displayed intense photoluminescence, which was assigned as metal-to-ligand charge transfer (MLCT) transitions. Reaction of (Bu(4)N)(2)[Pt(Ctbd1;CC(5)H(4)N-4)(4)] with 4 equiv of [Pt((t)Bu(3)trpy)(MeCN)](OTf)(2) in methanol did not yield the expected pentanuclear platinum product, [Pt(Ctbd1;CC(5)H(4)N)(4)[Pt((t)Bu(3)trpy)](4)](OTf)(6), but instead afforded a strongly luminescent 4-ethynylpyridine-bridged dinuclear complex, [Pt((t)Bu(3)trpy)(Ctbd1;CC(5)H(4)N)Pt((t)Bu(3)trpy)](PF(6))(3,) which has been structurally characterized. The emission origin is assigned as derived from states of predominantly (3)MLCT [d(pi)(Pt) --> pi((t)Bu(3)trpy)] character, probably mixed with some intraligand (3)IL [pi --> pi(Ctbd1;C)], and ligand-to-ligand charge transfer (3)LLCT [pi(Ctbd1;C) --> pi((t)()Bu(3)trpy)] character. On the other hand, reaction of (Bu(4)N)(2)[Pt(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(4)] with [Ag(MeCN)(4)][BF(4)] gave a mixed-metal aggregate, [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)]. The crystal structure of [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)] has also been determined. A comparison study of the spectroscopic properties of the hexanuclear platinum-silver complex with its precursor complex has been made and their spectroscopic origins were suggested.  相似文献   

7.
A series of soluble trinuclear copper(I) and silver(I) complexes containing bicapped diynyl ligands, [M(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CR)(2)]PF(6) (M = Cu, R = Ph, C(6)H(4)-CH(3)-p, C(6)H(4)-OCH(3)-p, (n)C(6)H(13), H; M = Ag, R = Ph, C(6)H(4)-OCH(3)-p), has been synthesized and their electronic, photophysical, and electrochemical properties studied. The X-ray crystal structures of [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CPh)(2)]PF(6) and [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CH)(2)]PF(6) have been determined.  相似文献   

8.
A series of mononuclear platinum complexes containing diynyldiphenylphosphine ligands [cis-Pt(C(6)F(5))(2)(PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)L](n)(n= 0, L = tht, R = Ph 2a, Bu(t)2b; L = PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR, 4a, 4b; n=-1, L = CN(-), 3a, 3b) has been synthesized and the X-ray crystal structures of 4a and 4b have been determined. In order to compare the eta2-bonding capability of the inner and outer alkyne units, the reactivity of towards [cis-Pt(C(6)F(5))(2)(thf)(2)] or [Pt(eta2)-C(2)H(4))(PPh(3))(2)] has been examined. Complexes coordinate the fragment "cis-Pt(C(6)F(5))(2)" using the inner alkynyl fragment and the sulfur of the tht ligand giving rise the binuclear derivatives [(C(6)F(5))(2)Pt(mu-tht)(mu-1kappaP:2eta2-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)Pt(C(6)F(5))(2)](R = Ph 5a, Bu(t)5b). The phenyldiynylphosphine complexes 2a, 3a and 4a react with [Pt(eta2)-C(2)H(4))(PPh(3))(2)] to give the mixed-valence Pt(II)-Pt(0) complexes [((C(6)F(5))(2)LPt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)](n)(L = tht 6a, CN 8a and PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh 9a) in which the Pt(0) fragment is eta2-complexed by the outer fragment. Complex 6a isomerizes in solution to a final complex [((C(6)F(5))(2)(tht)Pt(mu-1kappaP:2eta2)-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)]7a having the Pt(0) fragment coordinated to the inner alkyne function. In contrast, the tert-butyldiynylphosphine complexes 2b and 3b coordinate the Pt(0) unit through the phosphorus substituted inner acetylenic entity yielding 7b and 8b. By using 4a and 2 equiv. of [Pt(eta2)-C(2)H(4))(PPh(3))(2)] as precursors, the synthesis of the trinuclear complex [cis-((C(6)F(5))(2)Pt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh)(2))(Pt(PPh(3))(2))(2)]10a, bearing two Pt(0)(PPh(3))(2)eta2)-coordinated to the outer alkyne functions is achieved. The structure of 7a has been confirmed by single-crystal X-ray diffraction.  相似文献   

9.
Studies on the subtle effects and roles of polyatomic anions in the self-assembly of a series of AgX complexes with 2,4'-Py(2)S (X(-) = NO(3)(-), BF(4)(-), ClO(4)(-), PF(6)(-), CF(3)CO(2)(-), and CF(3)SO(3)(-); 2,4'-Py(2)S = 2,4'-thiobis(pyridine)) have been carried out. The formation of products appears to be primarily associated with a suitable combination of the skewed conformers of 2,4'-Py(2)S and a variety of coordination geometries of Ag(I) ions. The molecular construction via self-assembly is delicately dependent upon the nature of the anions. Coordinating anions afford the 1:1 adducts [Ag(2,4'-Py(2)S)X] (X(-) = NO(3)(-) and CF(3)CO(2)(-)), whereas noncoordinating anions form the 3:4 adducts [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Each structure seems to be constructed by competition between pi-pi interactions of 2,4'-Py(2)S spacers vs Ag.X interactions. For ClO(4)(-) and PF(6)(-), an anion-free network consisting of linear Ag(I) and trigonal Ag(I) in a 1:2 ratio has been obtained whereas, for the coordinating anions NO(3)(-) and CF(3)CO(2)(-), an anion-bridged helix sheet and an anion-bridged cyclic dimer chain, respectively, have been assembled. For a moderately coordinating anion, CF(3)SO(3)(-), the 3:4 adduct [Ag(3)(2,4'-Py(2)S)(4)](CF(3)SO(3))(3) has been obtained similarly to the noncoordinating anions, but its structure is a double strand via both face-to-face (pi-pi) stackings and Ag.Ag interactions, in contrast to the noncoordinating anions. The anion exchanges of [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = BF(4)(-), ClO(4)(-), and PF(6)(-)) with BF(4)(-), ClO(4)(-), and PF(6)(-) in aqueous media indicate that a [BF(4)(-)] analogue is isostructural with [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Furthermore, the anion exchangeability for the noncoordinating anion compounds and the X-ray data for the coordinating anion compounds establish the coordinating order to be NO(3)(-) > CF(3)CO(2)(-) > CF(3)SO(3)(-) > PF(6)(-) > ClO(4)(-) > BF(4)(-).  相似文献   

10.
Treatment of the osmabenzyne Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)Cl(2)(PPh(3))(2) (1) with 2,2'-bipyridine (bipy) and thallium triflate (TlOTf) produces the thermally stable dicationic osmabenzyne [Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)](OTf)(2) (2). The dicationic osmabenzyne 2 reacts with ROH (R = H, Me) to give osmabenzene complexes [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf, in which the metallabenzene ring deviates significantly from planarity. In contrast, reaction of the dicationic complex 2 with NaBH(4) produces a cyclopentadienyl complex, presumably through the osmabenzene intermediate [Os(=CHC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf. The higher thermal stability of [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf relative to [Os(=CHC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf can be related to the stabilization effect of the OR groups on the metallacycle. A theoretical study shows that conversion of the dicationic osmabenzyne complex [Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)](OTf)(2) to a carbene complex by reductive elimination is thermodynamically unfavorable. The theoretical study also suggests that the nonplanarity of the osmabenzenes [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf is mainly due to electronic reasons.  相似文献   

11.
A nitrosylruthenium alkynyl complex of TpRuCl(C[triple bond]CPh)(NO)(1a) was reacted with PPh3 in the presence of HBF4.Et2O at room temperature to give a beta-phosphonio-alkenyl complex (E)-[TpRuCl{CH=C(PPh3)Ph}(NO)]BF4(2.BF4). On the other hand, for gamma-hydroxyalkynyl complexes TpRuCl{C[triple bond]CC(R)2OH}(NO)(R = Me (1b), Ph (1c), H (1d)), similar treatments with PPh3 were found to give gamma-phosphonio-alkynyl [TpRuCl{C[triple bond]CC(Me)2PPh3}(NO)]BF4(3.BF4),alpha-phosphonio-allenyl [TpRuCl{C(PPh3)=C=CPh2}(NO)]BF4(4.BF4), and a novel product of gamma-hydroxy-beta-phosphonio-alkenyl (E)-[TpRuCl{CH=C(PPh3)CH2OH}(NO)]BF4(5.BF4), respectively. Dominant factors for the selectivity in affording 3-5 were associated with the steric congestion and electronic properties at the gamma-carbons, along with those around the metal fragment. From the bis(alkynyl) complex TpRu(C[triple bond]CPh)2(NO)6, a bis(beta-phosphonio-alkenyl)(E,E)-[TpRu{CH=C(PPh3)Ph}2(NO)](BF4)2{7.(BF4)2} was produced at room temperature. However, similar reactions at 0 degrees C gave an alkynyl beta-phosphonio-alkenyl complex (E)-[TpRu(C[triple bondCPh){CH=C(PPh3)Ph}(NO)]BF4(8.BF4) as a sole product, of which additional hydration in the presence of HBF4.Et2O afforded a [small beta]-phosphonio-alkenyl ketonyl (E)-[TpRu{CH2C(O)Ph}{CH=C(PPh3)Ph}(NO)]BF(.9BF4). Five complexes, 2-5 and 7 were crystallographically characterized.  相似文献   

12.
Two heterotrinuclear oligomeric complexes [trans-RuCl(C[triple bond, length as m-dash]Cpy-4)(dppm)(2)](2)[MCl(2)] (M = Pd ; M = Pt ) are prepared from the metalloligand trans-[RuCl(C[triple bond, length as m-dash]Cpy-4)(dppm)(2)] (dppm = Ph(2)PCH(2)PPh(2), ). The resultant linear alignment of the metals [Ru-M-Ru] is imposed by a combinative use of trans-directed spacers and planar metals with trans-juxtaposed donor sites. Ligand exchange of with [Pd(CH(3)CN)(4)][PF(6)](2) gives trans-[Ru(CH(3)CN)(C[triple bond, length as m-dash]Cpy-4)(dppm)(2)][PF(6)] (). All complexes are characterized by single-crystal X-ray crystallography and solution spectroscopy. Acid-base titration on suggested protonation of the pendant pyridyl. Complexes and also undergo protonation at the C[triple bond, length as m-dash]C moiety under acid conditions. The inter-conversion of alkynyl and vinylidene functionality is described. The dual acid and base characters of makes it a potential metalloligand towards basic and acidic fragments in multinuclear heterometallic assemblies.  相似文献   

13.
As part of our interest in the design and reactivity of P,O ligands, and because the insertion chemistry of small molecules into a metal alkyl bond is very dependent on the ancillary ligands, the behavior of Pt-methyl complexes containing the beta-phosphonato-phosphine ligand rac-Ph2PCH(Ph)P(O)(OEt)2 (abbreviated PPO in the following) toward CO insertion has been explored. New, mononuclear Pt(II) complexes containing one or two PPO ligands, [PtClMe(kappa2-PPO)] (1), [Pt{C(O)Me}Cl(kappa2-PPO)] (2), [PtMe(CO)(kappa2-PPO)]OTf (3 x OTf), [PtMe(OTf)(kappa2-PPO)] (4), trans-[PtClMe(kappa1-PPO)2] (5), [PtMe(kappa2-PPO)(kappa1-PPO)]BF4 (6 x BF4), [PtMe(kappa2-PPO)(kappa1-PPO)]OTf (6 x OTf), and [Pt{C(O)Me}(kappa2-PPO)(kappa1-PPO)]BF4 (7 x BF4) have been prepared and characterized. Hemilability of the ligands is observed in the cations 6 and 7 in which the terminally bound and chelating PPO ligands exchange their role on the NMR time-scale. The acetyl complexes 2 and 7 are stable in solution, but the former deinserts CO upon chloride abstraction. We also demonstrate the ability of PPO to behave as an assembling ligand and to stabilize a heterometallic Pt-Ag metal complex, [PtMe(kappa2-PPO){mu-(eta1-P;eta1-O)PPO)}Ag(OTf)(Pt-Ag)]OTf (8 x OTf), which was obtained by reaction of 5 with AgOTf to generate more reactive, cationic complexes. Whereas the first equivalent of AgOTf abstracted the chloride ligand, the second equivalent added to the cationic complex with formation of a Pt-Ag bond (2.819(1) A). The complexes 1, 2, 4, 5 x CH2Cl2, and (8 x OTf)2 have been structurally characterized by single-crystal X-ray diffraction. The latter has a dimeric nature in the solid state, with two silver-bound triflates acting as bridging ligands between two Pt-Ag moieties. In addition to the Ag-Pt bond, the Ag+ cation is stabilized by a dative O -->Ag interaction involving one of the PPO ligands.  相似文献   

14.
Hui CK  Chu BW  Zhu N  Yam VW 《Inorganic chemistry》2002,41(24):6178-6180
A novel luminescent hexanuclear platinum(II) complex, [Pt(2)(mu-dppm)(2)(C[triple bond]CC(5)H(4)N)(4)[Pt(trpy)](4)](CF(3)SO(3))(8) (trpy = 2,2':6',2'-terpyridine), was successfully synthesized by using the face-to-face dinuclear platinum(II) ethynylpyridine complex [Pt(2)(mu-dppm)(2)(C[triple bond]CC(5)H(4)N)(4)] as the building block.  相似文献   

15.
The sequential conversion of [OsBr(cod)Cp*] (9) to [OsBr(dppe)Cp*] (10), [Os([=C=CH2)(dppe)Cp*]PF6 ([11]PF6), [Os(C triple bond CH)(dppe)Cp*] (12), [{Os(dppe)Cp*}2{mu-(=C=CH-CH=C=)}][PF6]2 ([13](PF6)2) and finally [{Os(dppe)Cp*}(2)(mu-C triple bond CC triple bond C)] (14) has been used to make the third member of the triad [{M(dppe)Cp*}2(mu-C triple bond CC triple bond C)] (M = Fe, Ru, Os). The molecular structures of []PF6, 12 and 14, together with those of the related osmium complexes [Os(NCMe)(dppe)Cp*]PF6 ([15]PF6) and [Os(C triple bond CPh)(dppe)Cp*] (16), have been determined by single-crystal X-ray diffraction studies. Comparison of the redox properties of 14 with those of its iron and ruthenium congeners shows that the first oxidation potential E1 varies as: Fe approximately Os < Ru. Whereas the Fe complex has been shown to undergo three sequential 1-electron oxidation processes within conventional electrochemical solvent windows, the Ru and Os compounds undergo no fewer than four sequential oxidation events giving rise to a five-membered series of redox related complexes [{M(dppe)Cp*}2(mu-C4)]n+ (n = 0, 1, 2, 3 and 4), the osmium derivatives being obtained at considerably lower potentials than the ruthenium analogues. These results are complimented by DFT and DT DFT calculations.  相似文献   

16.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

17.
The dynamic behavior in solution of eight mono-hapto?tetraphosphorus transition metal-complexes, trans-[Ru(dppm)(2) (H)(η(1) -P(4) )]BF(4) ([1]BF(4) ), trans-[Ru(dppe)(2) (H)(η(1) -P(4) )]BF(4) ([2]BF(4) ), [CpRu(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([3]PF(6) ), [CpOs(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([4]PF(6) ), [Cp*Ru(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([5]PF(6) ), [Cp*Ru(dppe)(η(1) -P(4) )]PF(6) ([6]PF(6) ), [Cp*Fe(dppe)(η(1) -P(4) )]PF(6) ([7]PF(6) ), [(triphos)Re(CO)(2) (η(1) -P(4) )]OTf ([8]OTf), and of three bimetallic Ru(μ,η(1:2) -P(4) )Pt species [{Ru(dppm)(2) (H)}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([1-Pt]BF(4) ), [{Ru(dppe)(2) (H)}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([2-Pt]BF(4) ), [{CpRu(PPh(3) )(2) )}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([3-Pt]BF(4) ), [dppm=bis(diphenylphosphanyl)methane; dppe=1,2-bis(diphenylphosphanyl)ethane; triphos=1,1,1-tris(diphenylphosphanylmethyl)ethane; Cp=η(5) -C(5) H(5) ; Cp*=η(5) -C(5) Me(5) ] was studied by variable-temperature (VT) NMR and (31) P{(1) H} exchange spectroscopy (EXSY). For most of the mononuclear species, NMR spectroscopy allowed to ascertain that the metal-coordinated P(4) molecule experiences a dynamic process consisting, apart from the free rotation about the M?P(4) axis, in a tumbling movement of the P(4) cage while remaining chemically coordinated to the central metal. EXSY and VT (31) P?NMR experiments showed that also the binuclear complex cations [1-Pt](+) -[3-Pt](+) are subjected to molecular motions featured by the shift of each metal from one P to an adjacent one of the P(4) moiety. The relative mobility of the metal fragments (Ru vs. Pt) was found to depend on the co-ligands of the binuclear complexes. For complexes [2]BF(4) and [3]PF(6) , MAS, (31) P?NMR experiments revealed that the dynamic processes observed in solution (i.e., rotation and tumbling) may take place also in the solid state. The activation parameters for the dynamic processes of complexes 1(+) , 2(+) , 3(+) , 4(+) , 6(+) , 8(+) in solution, as well as the X-ray structures of 2(+) , 3(+) , 5(+) , 6(+) are also reported. The data collected suggest that metal-coordinated P(4) should not be considered as a static ligand in solution and in the solid state.  相似文献   

18.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

19.
A novel series of luminescent heterodecanuclear mixed-metal alkynyl complexes, [Ag6(mu-dppm)4[mu3-C[triple bond]CC[triple bond]C-Re(N--N)(CO)3]4](PF6)2, (N--N = tBu2bpy, Me2bpy, phen, Br2phen), have been successfully synthesized; the X-ray crystal structures of [Ag6(mu-dppm)4[mu3-C[triple bond]CC[triple bond]C-Re(Me2bpy)(CO)3]4](PF6)2 and [Ag6(mu-dppm)4[mu3-C[triple bond]CC[triple bond]C-Re(Br2phen)(CO)3]4](PF6)2 have also been determined.  相似文献   

20.
Reduction of [M(CO)2(eta-RC[triple bond]CR')Tp']X {Tp' = hydrotris(3,5-dimethylpyrazolyl)borate, M = Mo, X = [PF6]-, R = R' = Ph, C6H4OMe-4 or Me; R = Ph, R' = H; M = W, X = [BF4]-, R = R' = Ph or Me; R = Ph, R' = H} with [Co(eta-C5H5)2] gave paramagnetic [M(CO)2(eta-RC[triple bond]CR')Tp'], characterised by IR and ESR spectroscopy. X-Ray structural studies on the redox pair [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'] and [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'][PF6] showed that oxidation is accompanied by a lengthening of the C[triple bond]C bond and shortening of the Mo-C(alkyne) bonds, consistent with removal of an electron from an orbital antibonding with respect to the Mo-alkyne bond, and with conversion of the alkyne from a three- to a four-electron donor. Reduction of [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'][PF6] with [Co(eta-C5H5)2] in CH2Cl2 gives [MoCl(CO)(eta-MeC[triple bond]CMe)Tp'], via nitrile substitution in [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'], whereas a similar reaction with [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']+ (M = Mo or W) gives the phosphite-containing radicals [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']. ESR spectroscopic studies and DFT calculations on [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {M = Mo or W, L = CO or P(OCH2)3CEt} show the SOMO of the neutral d5 species (the LUMO of the d4 cations) to be largely d(yz) in character although much more delocalised in the W complexes. Non-coincidence effects between the g and metal hyperfine matrices in the Mo spectra indicate hybridisation of the metal d-orbitals in the SOMO, consistent with a rotation of the coordinated alkyne about the M-C2 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号