首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the basic principles that govern RNA binding by aminoglycosides is important for the design of new generations of antibiotics that do not suffer from the known mechanisms of drug resistance. With this goal in mind, we examined the binding of kanamycin A and four derivatives (the products of enzymic turnovers of kanamycin A by aminoglycoside-modifying enzymes) to a 27 nucleotide RNA representing the bacterial ribosomal A site. Modification of kanamycin A functional groups that have been directly implicated in the maintenance of specific interactions with RNA led to a decrease in affinity for the target RNA. Overall, the products of reactions catalyzed by aminoglycoside resistance enzymes exhibit diminished binding to the A site of bacterial 16S rRNA, which correlates well with a loss of antibacterial ability in resistant organisms that harbor these enzymes.  相似文献   

2.
The X-ray crystal structures for the complexes of three designer antibiotics, compounds 1, 2, and 3, bound to two models for the ribosomal aminoacyl-tRNA site (A site) at 2.5-3.0 Angstroms resolution and that of neamine at 2.8 Angstroms resolution are described. Furthermore, the complex of antibiotic 1 bound to the A site in the entire 30S ribosomal subunit of Thermus thermophilus is reported at 3.8 Angstroms resolution. Molecular dynamics simulations revealed that the designer compounds provide additional stability to bases A1492 and A1493 in their extrahelical forms. Snapshots from the simulations were used for free energy calculations, which revealed that van der Waals and hydrophobic effects were the driving forces behind the binding of designer antibiotic 3 when compared to the parental neamine.  相似文献   

3.
Natural aminoglycosides are therapeutically useful antibiotics and very efficient RNA ligands. They are oligosaccharides that contain several ammonium groups able to interfere with the translation process in prokaryotes upon binding to bacterial ribosomal RNA (rRNA), and thus, impairing protein synthesis. Even if aminoglycosides are commonly used in therapy, these RNA binders lack selectivity and are able to bind to a wide number of RNA sequences/structures. This is one of the reasons for their toxicity and limited applications in therapy. At the same time, the ability of aminoglycosides to bind to various RNAs renders them a great source of inspiration for the synthesis of new binders with improved affinity and specificity toward several therapeutically relevant RNA targets. Thus, a number of studies have been performed on these complex and highly functionalized compounds, leading to the development of various synthetic methodologies toward the synthesis of conjugated aminoglycosides. The aim of this review is to highlight recent progress in the field of aminoglycoside conjugation, paying particular attention to modifications performed toward the improvement of affinity and especially to the selectivity of the resulting compounds. This will help readers to understand how to introduce a desired chemical modification for future developments of RNA ligands as antibiotics, antiviral, and anticancer compounds.  相似文献   

4.
Shan Wu  Xiaoping Lei 《Tetrahedron》2010,66(19):3433-3440
Three types of neamine-β-carboline conjugates were synthesized in good yields by the coupling of neamine and β-carboline-3-carboxylic acids using aliphatic diamine as a linker. The binding properties of these conjugates to 16S rRNA and 18S rRNA were evaluated by surface plasmon resonance (SPR), showing that some conjugates had stronger binding affinities than neamine. In vitro antimicrobial activities were also evaluated and the results showed that some synthetic compounds exhibited better antibacterial activities than neamine. The preliminary structure-activity relationship was discussed. The present experimental data demonstrated that synthetic neamine-carboline conjugates might hold the potential as new antibiotics.  相似文献   

5.
Aminoglycoside 3'-phosphotransferases [APH(3')s] phosphorylate aminoglycoside antibiotics, a reaction that inactivates the antibiotics. These enzymes are the primary cause of resistance to aminoglycosides in bacteria. APH(3')-Ia operates by a random-equilibrium BiBi mechanism, whereas APH(3')-IIIa catalyzes its reaction by the Theorell-Chance mechanism, a form of ordered BiBi mechanism. Hence, both substrates have to be present in the active site prior to the transfer of phosphate by both mechanisms. Four bisubstrate analogues, compounds 1-4, were designed and synthesized as inhibitors for APH(3')s. These compounds are made of adenosine linked covalently to the 3'-hydroxyl of neamine (an aminoglycoside) via all-methylene tethers of 5-8 carbons. The K(i) values measured for these compounds indicated that affinities of APH(3')-Ia and APH(3')-IIa for compounds 2 and 3 (six- and seven-carbon tethers, respectively) were the best, and the inhibition constants for the two were comparable.  相似文献   

6.
《Chemistry & biology》1998,5(7):397-406
Background: Aminoglycoside antibiotics bind to the A-site of the decoding region of 16S RNA in the bacterial ribosome, an interaction that is probably responsible for their activity. A detailed study of the specificity of aminoglycoside binding to A-site RNA would improve our understanding of their mechanism of antibiotic activity.Results: We have studied the binding specificity of several aminoglycosides with model RNA sequences derived from the 16S ribosomal A-site using surface plasmon resonance. The 4,5-linked (neomycin) class of aminoglycosides showed specificity for wild-type A-site sequences, but the 4,6-linked class (kanamycins and gentamicins), generally showed poor specificity for the same sequences. Methylation of a cytidine in the target RNA, as found in the Escherichia coli ribosome, had negligible effects on aminoglycoside binding.Conclusions: Although both 4,5- and 4,6-linked aminoglycosides target the same ribosomal site, they appear to bind and effect antibiotic activity in different manners. The aminoglycosides might recognize different RNA conformations or the interaction might involve different RNA tertiary structures that are not equally sampled in our ribosome-free model. These results imply that models of ribosomal RNA must be carefully designed if the data are expected to accurately reflect biological activity.  相似文献   

7.
A method is described for the NMR-based screening for the discovery of aminoglycoside mimetics that bind to Escherichia coli A-site RNA. Although aminoglycosides are clinically useful, they exhibit high nephrotoxicity and ototoxicity, and their overuse has led to the development of resistance to important microbial pathogens. To identify a new series of aminoglycoside mimetics that could potentially overcome the problems associated with toxicities and resistance development observed with the aminoglycosides, we have prepared large quantities of E. coli 16 S A-site RNA and conducted an NMR-based screening of our compound library in search for small-molecule RNA binders against this RNA target. From these studies, several classes of compounds were identified as initial hits with binding affinities in the range of 70 microM to 3 mM. Lead optimization through synthetic modifications of these initial hits led to the discovery of several small-molecule aminoglycoside mimetics that are structurally very different from the known aminoglycosides. Structural models of the A-site RNA/ligand complexes were prepared and compared to the three-dimensional structures of the RNA/aminoglycoside complexes.  相似文献   

8.
Herein is described the identification of RNA internal loops that bind to derivatives of neomycin B, neamine, tobramycin, and kanamycin A. RNA loop-ligand partners were identified by a two-dimensional combinatorial screening (2DCS) platform that probes RNA and chemical spaces simultaneously. In 2DCS, an aminoglycoside library immobilized onto an agarose microarray was probed for binding to a 3 x 3 nucleotide RNA internal loop library (81,920 interactions probed in duplicate in a single experiment). RNAs that bound aminoglycosides were harvested from the array via gel excision. RNA internal loop preferences for three aminoglycosides were identified from statistical analysis of selected structures. This provides consensus RNA internal loops that bind these structures and include: loops with potential GA pairs for the neomycin derivative, loops with potential GG pairs for the tobramycin derivative, and pyrimidine-rich loops for the kanamycin A derivative. Results with the neamine derivative show that it binds a variety of loops, including loops that contain potential GA pairs that also recognize the neomycin B derivative. All studied selected internal loops are specific for the aminoglycoside that they were selected to bind. Specificity was quantified for 16 selected internal loops by studying their binding to each of the arrayed aminoglycosides. Specificities ranged from 2- to 80-fold with an average specificity of 20-fold. These studies show that 2DCS is a unique platform to probe RNA and chemical space simultaneously to identify specific RNA motif-ligand interactions.  相似文献   

9.
Aminoglycoside antibiotics target the decoding aminoacyl site (A site) on the 16S ribosomal RNA and induce miscoding during translation. Here, we present the crystal structure, at 2.54 A resolution, of an RNA oligonucleotide containing the A site sequence complexed to the 4,6-disubstituted 2-deoxystreptamine aminoglycoside tobramycin. The three aminosugar rings making up tobramycin interact with the deep-groove atoms directly or via water molecules and stabilize a fully bulged-out conformation of adenines A(1492) and A(1493). The comparison between this structure and the one previously solved in the presence of paromomycin confirms the importance of the functional groups on the common neamine part of these two antibiotics for binding to RNA. Furthermore, the analysis of the present structure provides a molecular explanation to some of the resistance mechanisms that have spread among bacteria and rendered aminoglycoside antibiotics inefficient.  相似文献   

10.
Ribostamycin is a 4,5-disubstituted 2-deoxystreptamine (DOS)-containing aminoglycoside antibiotics and naturally produced by Streptomyces ribosidificus ATCC 21294. It is also an intermediate in the biosynthesis of butirosin and neomycin. In the biosynthesis of ribostamycin, DOS is glycosylated to generate paromamine which is converted to neamine by successive dehydrogenation followed by amination, and finally ribosylation of neamine gives ribostamycin. Here, we report the biosynthesis of 6′-deamino-6′-hydroxyribostamycin (a ribostamycin derivative or pseudoribostamycin) in Streptomyces venezuelae YJ003 by reconstructing gene cassettes for direct ribosylation of paromamine. A trace amount of pseudoribostamycin was detected with ribostamycin in the isolates of ribostamycin cosmid heterologously expressed in Streptomyces lividans TK24. It has also indicated that the ribosyltransferase can accept both neamine and paromamine. Thus, the present in vivo modification of ribostamycin could be useful for the production of hybrid compounds to defend against bacterial resistance to aminoglycosides.  相似文献   

11.
The emergence of bacterial resistance to the major classes of antibiotics has become a serious problem over recent years. For aminoglycosides, the major biochemical mechanism for bacterial resistance is the enzymatic modification of the drug. Interestingly, in several cases, the oligosaccharide conformation recognized by the ribosomic RNA and the enzymes responsible for the antibiotic inactivation is remarkably different. This observation suggests a possible structure-based chemical strategy to overcome bacterial resistance; in principle, it should be possible to design a conformationally locked oligosaccharide that still retains antibiotic activity but that is not susceptible to enzymatic inactivation. To explore the scope and limitations of this strategy, we have synthesized several aminoglycoside derivatives locked in the ribosome-bound "bioactive" conformation. The effect of the structural preorganization on RNA binding, together with its influence on the aminoglycoside inactivation by several enzymes involved in bacterial resistance, has been studied. Our results indicate that the conformational constraint has a modest effect on their interaction with ribosomal RNA. In contrast, it may display a large impact on their enzymatic inactivation. Thus, the work presented herein provides a key example of how the conformational differences exhibited by these ligands within the binding pockets of the ribosome and of those enzymes involved in bacterial resistance can, in favorable cases, be exploited for designing new antibiotic derivatives with improved activity in resistant strains.  相似文献   

12.
Streptogramin antibiotics are comprised of two distinct chemical components: the type A polyketides and the type B cyclic depsipeptides. Clinical resistance to the type B streptogramins can occur via enzymatic degradation catalyzed by the lyase Vgb or by target modification through the action of Erm ribosomal RNA methyltransferases. We have prepared through chemical and chemo-enzymatic approaches a series of chimeric antibiotics composed of elements of type B streptogramins and the membrane-active antibiotic tyrocidine that evade these resistance mechanisms. These new compounds show broad antibiotic activity against gram-positive bacteria including a number of important pathogens, and chimeras appear to function by a mechanism that is distinct from their parent antibiotics. These results allow for the development of a brand new class of antibiotics with the ability to evade type B streptogramin-resistance mechanisms.  相似文献   

13.
Aminoglycosides are a family of molecules based on a 2-deoxystreptamine ring that is functionalized with a variety of sugar units that contain vicinal amine and hydroxyl functionality. These positively-charged amines promote selective high affinity binding to bacterial 16 s rRNA with resultant antibacterial activity. Aminoglycosides have also been shown to selectively target a variety of therapeutically relevant RNA motifs, and in combination with copper to promote irreversible degradation of the RNA target. The presence of multiple hydroxyl and amine groups on multiple rings creates many potential copper coordination sites. However, only a small subset of these sites actually bind copper, which have not been clearly defined experimentally, Herein we describe a more extensive structural characterization of the complexes of six aminoglycosides (kanamycin A, kanamycin B, neomycin B, neamine, tobramycin and paromomycin) that provide insights on the factors contributing to the coordination selectivity of aminoglycosides toward divalent copper. The presence of vicinal ligand donors capable of chelating the copper ion appears to be a prerequisite for stable metal binding, with charge density providing further tuning of the K(D). A possible role for metal coordination in antibacterial activity is also considered.  相似文献   

14.
The continuous emergence of antimicrobial resistance is causing a threat to patients infected by multidrug-resistant pathogens. In particular, the clinical use of aminoglycoside antibiotics, broad-spectrum antibacterials of last resort, is limited due to rising bacterial resistance. One of the major resistance mechanisms in Gram-positive and Gram-negative bacteria is phosphorylation of these amino sugars at the 3’-position by O-phosphotransferases [APH(3’)s]. Structural alteration of these antibiotics at the 3’-position would be an obvious strategy to tackle this resistance mechanism. However, the access to such derivatives requires cumbersome multi-step synthesis, which is not appealing for pharma industry in this low-return-on-investment market. To overcome this obstacle and combat bacterial resistance mediated by APH(3’)s, we introduce a novel regioselective modification of aminoglycosides in the 3’-position via palladium-catalyzed oxidation. To underline the effectiveness of our method for structural modification of aminoglycosides, we have developed two novel antibiotic candidates overcoming APH(3’)s-mediated resistance employing only four synthetic steps.  相似文献   

15.
The ribosome is an important target for aminoglycoside antibiotics; however, the clinical effectiveness of aminoglycosides has diminished due to bacterial resistance mechanisms. Here we report the X-ray structure of a novel synthetic aminoglycoside bound to the A site of the ribosome, its target for manifestation of activity. The structure validates the in silico design paradigms for the antibiotic and reveals the molecular interactions made by this novel antibiotic in prokaryotes.  相似文献   

16.
Antibiotic resistance is considered a major health concern globally. It is a fact that the clinical need for new antibiotics was not achieved until now. One of the most commonly prescribed classes of antibiotics is β-Lactam antibiotics. However, most bacteria have developed resistance against β-Lactams by producing enzymes β-Lactamase or penicillinase. The discovery of new β-Lactamase inhibitors as new antibiotics or antibiotic adjuvants is essential to avoid future catastrophic pandemics. In this study, five dihydroisocoumarin: 6-methoxy mellein (1); 5,6-dihydroxymellein (2); 6-hydroxymellein (3); 4-chloro-6-hydroxymellein (4) and 4-chloro-5,6-di-hydroxymellein (5) were isolated from Wadi Lajab sediment-derived fungus Penicillium chrysogenum, located 15 km northwest of Jazan, KSA. The elucidation of the chemical structures of the isolated compounds was performed by analysis of their NMR, MS. Compounds 1–5 were tested for antibacterial activities against Gram-positive and Gram-negative bacteria. All of the compounds exhibited selective antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Bacillus licheniformis except compound 3. The chloro-dihydroisocoumarin derivative, compound 4, showed potential antimicrobial activities against all of the tested strains with the MIC value between 0.8–5.3 μg/mL followed by compound 5, which exhibited a moderate inhibitory effect. Molecular docking data showed good affinity with the isolated compounds to β-Lactamase enzymes of bacteria; NDM-1, CTX-M, OXA-48. This work provides an effective strategy for compounds to inhibit bacterial growth or overcome bacterial resistance.  相似文献   

17.
The action of aminoglycoside antibiotics is inhibited by chemical modification catalyzed by aminoglycoside inactivating enzymes, which bind these cationic saccharides with active site pockets that contain a preponderance of negatively charged residues. In this study, it was observed that several cationic antimicrobial peptides, representing different structural classes, could serve as inhibitors of such aminoglycoside resistance enzymes. The bovine antimicrobial peptide indolicidin and synthetic analogs appeared to be especially effective against a range of resistance enzymes, inhibiting enzymes belonging to both aminoglycoside phosphotransferase and aminoglycoside acetyltransferase classes, where the mode of action was dependent on the class of antibiotic resistance enzyme. These peptides represent the first example of broad-spectrum inhibitors of aminoglycoside resistance enzymes.  相似文献   

18.
Amongst the many synthetic aminoglycoside analogues that were developed to regain the efficacy of this class of antibiotics against resistant bacterial strains, the 1-N-acylated analogues are the most clinically used. In this study we demonstrate that 6'-N-acylation of the clinically used compound tobramycin and 6'-N-acylation of paromomycin result in derivatives resistant to deactivation by 6'-aminoglycoside acetyltransferase (AAC(6')) which is widely found in aminoglycoside resistant bacteria. When tested against AAC(6')- or AAC(3)-expressing bacteria as well as pathogenic bacterial strains, some of the analogues demonstrated improved antibacterial activity compared to their parent antibiotics. Improvement of the biological performance of the N-acylated analogues was found to be highly dependent on the specific aminoglycoside and acyl group. Our study indicates that as for 1-N-acylation, 6'- and 6'-N-acylation of aminoglycosides offer an additional promising direction in the search for aminoglycosides capable of overcoming infections by resistant bacteria.  相似文献   

19.
The present work aims to examine the worrying problem of antibiotic resistance and the emergence of multidrug-resistant bacterial strains, which have now become really common in hospitals and risk hindering the global control of infectious diseases. After a careful examination of these phenomena and multiple mechanisms that make certain bacteria resistant to specific antibiotics that were originally effective in the treatment of infections caused by the same pathogens, possible strategies to stem antibiotic resistance are analyzed. This paper, therefore, focuses on the most promising new chemical compounds in the current pipeline active against multidrug-resistant organisms that are innovative compared to traditional antibiotics: Firstly, the main antibacterial agents in clinical development (Phase III) from 2017 to 2020 are listed (with special attention on the treatment of infections caused by the pathogens Neisseria gonorrhoeae, including multidrug-resistant isolates, and Clostridium difficile), and then the paper moves on to the new agents of pharmacological interest that have been approved during the same period. They include tetracycline derivatives (eravacycline), fourth generation fluoroquinolones (delafloxacin), new combinations between one β-lactam and one β-lactamase inhibitor (meropenem and vaborbactam), siderophore cephalosporins (cefiderocol), new aminoglycosides (plazomicin), and agents in development for treating drug-resistant TB (pretomanid). It concludes with the advantages that can result from the use of these compounds, also mentioning other approaches, still poorly developed, for combating antibiotic resistance: Nanoparticles delivery systems for antibiotics.  相似文献   

20.
Bacterial strains have developed an ability to resist antibiotics via numerous mechanisms. Recently, researchers conducted several studies to identify natural bioactive compounds, particularly secondary metabolites of medicinal plants, such as terpenoids, flavonoids, and phenolic acids, as antibacterial agents. These molecules exert several mechanisms of action at different structural, cellular, and molecular levels, which could make them candidates or lead compounds for developing natural antibiotics. Research findings revealed that these bioactive compounds can inhibit the synthesis of DNA and proteins, block oxidative respiration, increase membrane permeability, and decrease membrane integrity. Furthermore, recent investigations showed that some bacterial strains resist these different mechanisms of antibacterial agents. Researchers demonstrated that this resistance to antibiotics is linked to a microbial cell-to-cell communication system called quorum sensing (QS). Consequently, inhibition of QS or quorum quenching is a promising strategy to not only overcome the resistance problems but also to treat infections. In this respect, various bioactive molecules, including terpenoids, flavonoids, and phenolic acids, exhibit numerous anti-QS mechanisms via the inhibition of auto-inducer releases, sequestration of QS-mediated molecules, and deregulation of QS gene expression. However, clinical applications of these molecules have not been fully covered, which limits their use against infectious diseases. Accordingly, the aim of the present work was to discuss the role of the QS system in bacteria and its involvement in virulence and resistance to antibiotics. In addition, the present review summarizes the most recent and relevant literature pertaining to the anti-quorum sensing of secondary metabolites and its relationship to antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号